One of the main drawbacks of anode-supported solid oxide fuel cell technology is the limited capability to withstand reduction and oxidation (“RedOx”) of the Ni phase. This study compares the effect of RedOx cycles on curvature and strength of half-cells, composed of a nickel-yttria-stabilized-zirconia (Ni-YSZ) support, a Ni-YSZ anode, and an 8YSZ electrolyte. Five different treatments are studied: (i) reduction at 600°C, (ii) reduction at 1000°C, (iii) 1RedOx cycle at 750°C, (iv) 5RedOx cycles at 750°C, and (v) 5RedOx cycles at 600°C. The strength is measured by the ball-on-ring method, where it is calculated analytically from the force. In this calculation the thermal stresses are estimated from the curvature of the half-cell. For each treatment, more than 30 samples are tested. About 20 ball-on-ring samples are laser cut from one original 12×12cm2 half-cell. Curvature and porosity are measured for each sample before and after RedOx treatments. The first observations show that increasing the reduction temperature enhance strength but does not influence the curvature, whereas 1RedOx cycle at 750°C increases the curvature without changing the strength. Consecutive RedOx cycles seem to decrease anode-supported cell strength but this is coupled to lower porosity of the tested samples.

1.
Larrain
,
D.
,
Van herle
,
J.
, and
Favrat
,
D.
, 2006, “
Simulation of SOFC Stack and Repeat Elements Including Interconnect Degradation and Anode Reoxidation Risk
,”
J. Power Sources
0378-7753,
161
(
1
), pp.
392
403
.
2.
Yang
,
Z.
,
Weil
,
K. S.
,
Paxton
,
D. M.
, and
Stevenson
,
J. W.
, 2003, “
Selection and Evaluation of Heat-Resistant Alloys for SOFC Interconnect Applications
,”
J. Electrochem. Soc.
0013-4651,
150
(
9
), pp.
A1188
A1201
.
3.
Yokokawa
,
H.
,
Sakai
,
N.
,
Kawada
,
T.
, and
Dokiya
,
M.
, 1990, “
Thermodynamic Analysis on Interface Between Perovskite Electrode and YSZ Electrolyte
,”
Solid State Ionics
0167-2738,
40–41
(
Pt1
), pp.
398
401
.
4.
Lee
,
H. Y.
, and
Oh
,
S. M.
, 1996, “
Origin of Cathodic Degradation and New Phase Formation at the La0.9Sr0.1MnO3/YSZ Interface
,”
Solid State Ionics
0167-2738,
90
(
1–4
), pp.
133
140
.
5.
Pujare
,
N. U.
,
Semkow
,
K. W.
, and
Sammells
,
A. F.
, 1987, “
A Direct H2S/Air Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
134
(
10
), pp.
2639
2640
.
6.
Zha
,
S.
,
Cheng
,
Z.
, and
Liu
,
M.
, 2007, “
Sulfur Poisoning and Regeneration of Ni-Based Anodes in Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
154
(
2
), pp.
B201
B206
.
7.
Simwonis
,
D.
,
Tietz
,
F.
, and
Stoever
,
D.
, 2000, “
Nickel Coarsening in Annealed Ni/8YSZ Anode Substrates for Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
132
(
3–4
), pp.
241
251
.
8.
Faes
,
A.
,
Hessler-Wyser
,
A.
,
Presvytes
,
D.
,
Vayenas
,
C. G.
, and
Van herle
,
J.
, 2009, “
Nickel-Zirconia Anode Degradation and Triple Phase Boundary Quantification from Microstructural Analysis
,”
Fuel Cells
0002-7820 ,
9
(
6
), pp.
841
851
.
9.
Taniguchi
,
S.
,
Kadowaki
,
M.
,
Kawamura
,
H.
,
Yasuo
,
T.
,
Akiyama
,
Y.
,
Miyake
,
Y.
, and
Saitoh
,
T.
, 1995, “
Degradation Phenomena in the Cathode of a Solid Oxide Fuel Cell With an Alloy Separator
,”
J. Power Sources
0378-7753,
55
(
1
), pp.
73
79
.
10.
Yokokawa
,
H.
,
Horita
,
T.
,
Sakai
,
N.
,
Yamaji
,
K.
,
Brito
,
M. E.
,
Xiong
,
Y. P.
, and
Kishimoto
,
H.
, 2006, “
Thermodynamic Considerations on Cr Poisoning in SOFC Cathodes
,”
Solid State Ionics
0167-2738,
177
(
35–36
), pp.
3193
3198
.
11.
Hattori
,
M.
,
Takeda
,
Y.
,
Sakaki
,
Y.
,
Nakanishi
,
A.
,
Ohara
,
S.
,
Mukai
,
K.
,
Lee
,
J. H.
, and
Fukui
,
T.
, 2004, “
Effect of Aging on Conductivity of Yttria Stabilized Zirconia
,”
J. Power Sources
0378-7753,
126
(
1–2
), pp.
23
27
.
12.
Haering
,
C.
,
Roosen
,
A.
, and
Schichl
,
H.
, 2005, “
Degradation of the Electrical Conductivity in Stabilised Zirconia Systems Part I: Yttria-Stabilised Zirconia
,”
Solid State Ionics
0167-2738,
176
(
3–4
), pp.
253
259
.
13.
Pihlatie
,
M.
,
Kaiser
,
A.
,
Larsen
,
P. H.
, and
Mogensen
,
M.
, 2009, “
Dimensional Behaviour of Ni–YSZ Composites During Redox Cycling
,”
J. Electrochem. Soc.
0013-4651,
156
(
3
), pp.
B322
B329
.
14.
Pihlatie
,
M.
,
Kaiser
,
A.
,
Larsen
,
P. H.
, and
Mogensen
,
M.
, 2007, “
Dimensional Behaviour of Ni-YSZ Anode Supports for SOFC Under RedOx Cycling Conditions
,”
ECS Trans.
1938-5862,
7
(
1
), pp.
1501
1510
.
15.
CRC
, 1973,
CRC Handbook of Chemistry and Physics
,
53rd ed.
,
CRC
,
Cleveland
.
16.
Wuillemin
,
Z.
,
Autissier
,
N.
,
Nakajo
,
M.
,
Luong
,
M.
,
Van herle
,
J.
, and
Favrat
,
D.
, 2008, “
Modeling and Study of the Influence of Sealing on a Solid Oxide Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
5
(
1
), p.
011016
.
17.
Kirstein
,
A. F.
, and
Woolley
,
R. M.
, 1967, “
Symmetrical Bending of Thin Circular Elastic Plates on Equally Spaced Point Supports
,”
J. Res. Natl. Bur. Stand.
0160-1741,
71C
(
1
), pp.
1
10
.
18.
Sørensen
,
B. F.
,
Sarraute
,
S.
,
Jørgensen
,
O.
, and
Horswell
,
A.
, 1998, “
Thermally Induced Delamination of Multilayers
,”
Acta Mater.
1359-6454,
46
(
8
), pp.
2603
2615
.
19.
Mori
,
M.
,
Yamamoto
,
T.
,
Itoh
,
H.
,
Inaba
,
H.
, and
Tagawa
,
H.
, 1998, “
Thermal Expansion of Nickel-Zirconia Anodes in Solid Oxide Fuel Cells During Fabrication and Operation
,”
J. Electrochem. Soc.
0013-4651,
145
(
4
), pp.
1374
1381
.
20.
Atkinson
,
A.
, and
Selçuk
,
A.
, 1999, “
Residual Stress and Fracture of Laminated Ceramic Membranes
,”
Acta Mater.
1359-6454,
47
(
3
), pp.
867
874
.
21.
Weibull
,
W.
, 1951, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
0021-8936,
18
(
3
), pp.
293
297
.
22.
Ramousse
,
S.
,
Menon
,
M.
,
Brodersen
,
K.
,
Knudsen
,
J.
,
Rahbek
,
U.
, and
Larsen
,
P. H.
, 2007, “
Manufacturing of Anode-Supported SOFC’s: Processing Parameters and Their Influence
,”
ECS Trans.
1938-5862,
7
(
1
), pp.
317
327
.
23.
Klemensoe
,
T.
, 2005,
Relationships Between Structure and Performance of SOFC Anodes
,
Technical University of Denmark, Risoe National Laboratory, Topsoe Fuel Cell
,
Denmark
.
24.
Waldbillig
,
D.
,
Wood
,
A.
, and
Ivey
,
D. G.
, 2005, “
Thermal Analysis of the Cyclic Reduction and Oxidation Behaviour of SOFC Anodes
,”
Solid State Ionics
0167-2738,
176
(
9–10
), pp.
847
859
.
25.
Selçuk
,
A.
, and
Atkinson
,
A.
, 1997, “
Elastic Properties of Ceramic Oxides Used in Solid Oxide Fuel Cells (SOFC)
,”
J. Eur. Ceram. Soc.
0955-2219,
17
(
12
), pp.
1523
1532
.
26.
Pihlatie
,
M.
,
Kaiser
,
A.
, and
Mogensen
,
M.
, 2009, “
Mechanical Properties of NiO/Ni-YSZ Composites Depending on Temperature, Porosity and Redox Cycling
,”
J. Eur. Ceram. Soc.
0955-2219,
29
(
9
), pp.
1657
1664
.
27.
Radovic
,
M.
, and
Lara-Curzio
,
E.
, 2004, “
Mechanical Properties of Tape Cast Nickel-Based Anode Materials for Solid Oxide Fuel Cells Before and After Reduction in Hydrogen
,”
Acta Mater.
1359-6454,
52
(
20
), pp.
5747
5756
.
28.
Malzbender
,
J.
,
Wessel
,
E.
,
Steinbrech
,
R. W.
, and
Singheiser
,
L.
, 2005, “
Reduction and Re-Oxidation of Anodes for Solid Oxide Fuel Cells (SOFC)
,”
28th International Conference on Advanced Ceramics and Composites
,
A. E.
Lara-Curzio
and
M. J.
Readey
, eds.,
The American Ceramic Society
,
Cocoa Beach
, p.
378
.
29.
Faes
,
A.
,
Nakajo
,
A.
,
Hessler-Wyser
,
A.
,
Dubois
,
D.
,
Modena
,
S.
,
Brisse
,
A.
, and
Van herle
,
J.
, 2009, “
RedOx Study of Anode Supported Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
193
(
1
), pp.
55
64
.
30.
Pihlatie
,
M.
,
Ramos
,
T.
, and
Kaiser
,
A.
, 2009, “
Testing and Improving the Redox Stability of Ni-Based Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
193
(
1
), pp.
322
330
.
You do not currently have access to this content.