Increasing lifetime and performance is critical for proton exchange membrane fuel cell (PEMFC) using stainless steel plates. A good compromise between passivity and electrical contact resistance of the plate material is required. Measuring the potential of each plate during fuel cell operation is of paramount importance to lead to relevant ex situ tests in order to investigate new materials. From a review on methods used for potential measurements, the present work focused on the realization and use of a dynamic hydrogen electrode (DHE) device as a reference electrode in a PEMFC single cell and its evaluation in terms of accuracy and drift. With classic reference electrodes introduced into the flow field, measurements were shown to be irrelevant because of the impossibility to ensure good and stable ionic conductivity between the reference electrode and the plate when operating the cell. Several examples of DHE found in the literature were reviewed and used to realize a DHE, which showed correct accuracy and stability of its potential under fully humidified conditions. The experimental device was shown to be reliable and easily adaptable for different single cells. It was used to investigate transient phenomena while cycling a cell, but needs some improvement when the cell is operated with unsaturated gases.

1.
Vielstich
,
W.
,
Lamm
,
A.
, and
Gasteiger
,
H. A.
, eds., 2003, “
Handbook of Fuel Cell: Fuel Cell Fundamentals, Technology, and Applications Part 1
,”
John Wiley & Sons
,
Chichester, UK
.
2.
Cooper
,
J. S.
, 2004, “
Design Analysis of PEMFC Bipolar Plates Considering Stack Manufacturing and Environment Impact
,”
J. Power Sources
0378-7753,
129
, pp.
152
169
.
3.
Kumar
,
A.
, 2004, “
Materials, Design, and Modelling for Bipolar/End Plates in Polymer Electrolyte Membrane Fuel Cells
,” Ph.D. thesis, Department of Metallurgical and Materials Engineering, University of Alabama, AL.
4.
Mehta
,
V.
, and
Cooper
,
J. S.
, 2003, “
Review and Analysis of PEM Fuel Cell Design and Manufacturing
,”
J. Power Sources
0378-7753,
114
, pp.
32
53
.
5.
Mosdale
,
R.
, Techniques de l'Ingénieur traité Génie électrique D 5570.
6.
Agneaux
,
A.
,
Plouzennec
,
M. H.
,
Antoni
,
L.
, and
Granier
,
J.
, 2004,
Proceedings of the Second Deutschland Fuel Cell Conference FDFC Belfort
.
7.
Li
,
M.
,
Luo
,
S.
,
Zeng
,
C.
,
Shen
,
J.
,
Lin
,
H.
, and
Cao
,
C.
, 2004, “
Corrosion Behavior of TiN Coated Type 316 Stainless Steel in Simulated PEMFC Environments
,”
Corros. Sci.
0010-938X,
46
, pp.
1369
1380
.
8.
Silva
,
R. F.
,
Franchi
,
D.
,
Leone
,
A.
,
Pilloni
,
L.
,
Masci
,
A.
, and
Pozio
,
A.
, 2006, “
Surface Conductivity and Stability of Metallic Bipolar Plate Materials for Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
51
, pp.
3592
3598
.
9.
Wang
,
H.
, and
Turner
,
J. A.
, 2004, “
Ferritic Stainless Steels as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
128
, pp.
193
200
.
10.
Andreaus
,
B.
, and
Scherer
,
G. G.
, 2004, “
Proton-Conducting Polymer Membranes in Fuel Cells—Humidification Aspects
,”
Solid State Ionics
0167-2738,
168
, pp.
311
320
.
11.
Andreaus
,
B.
,
McEvoy
,
A. J.
, and
Scherer
,
G. G.
, 2002, “
Analysis of Performance Losses in Polymer Electrolyte Fuel Cells at High Current Densities by Impedance Spectroscopy
,”
Electrochim. Acta
0013-4686,
47
, pp.
2223
2229
.
12.
Kuhn
,
H.
,
Andreaus
,
B.
,
Wokaun
,
A.
, and
Scherer
,
G. G.
, 2006, “
Electrochemical Impedance Spectroscopy Applied to Polymer Electrolyte Fuel Cells With a Pseudo Reference Electrode Arrangement
,”
Electrochim. Acta
0013-4686,
51
, pp.
1622
1628
.
13.
Küver
,
A.
,
Vogel
,
I.
, and
Vielstich
,
W.
, 1994, “
Distinct Performance Evaluation of a Direct Methanol SPE Fuel Cell. A New Method Using a Dynamic Hydrogen Reference Electrode
,”
J. Power Sources
0378-7753,
52
, pp.
77
80
.
14.
Paganin
,
V.
,
Sitta
,
E.
,
Iwasita
,
T.
, and
Vielstich
,
W.
, 2005, “
Methanol Crossover Effect on the Cathode Potential of a Direct PEM Fuel Cell
,”
J. Appl. Electrochem.
0021-891X,
35
, pp.
1239
1243
.
15.
Taniguchi
,
A.
,
Akita
,
T.
,
Yasuda
,
K.
, and
Miyazaki
,
Y.
, 2004, “
Analysis of Electrocatalyst Degradation in PEMFC Caused by Cell Reversal During Fuel Starvation
,”
J. Power Sources
0378-7753,
130
, pp.
42
49
.
16.
Adler
,
S. B.
, 2002, “
Reference Electrode Placement in Thin Solid Electrolytes
,”
J. Electrochem. Soc.
0013-4651,
149
, pp.
E166
E172
.
17.
He
,
W.
, and
Nguyen
,
T. V.
, 2004, “
Edge Effects on Reference Electrode Measurements in PEM Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A185
A195
.
18.
Li
,
G.
, and
Pickup
,
P. G.
, 2004, “
Measurement of Single Electrode Potentials and Impedances in Hydrogen and Direct Methanol PEM Fuel Cells
,”
Electrochim. Acta
0013-4686,
49
, pp.
4119
4126
.
19.
Liu
,
Z.
,
Wainright
,
J. S.
,
Huang
,
W.
, and
Savinell
,
R. F.
, 2004, “
Positioning the Reference Electrode in Proton Exchange Membrane Fuel Cells: Calculations of Primary and Secondary Current Distribution
,”
Electrochim. Acta
0013-4686,
49
, pp.
923
935
.
20.
Siroma
,
Z.
,
Kakitsubo
,
R.
,
Fujiwara
,
N.
,
Ioroi
,
T.
,
Yamazaki
,
S.-I.
, and
Yasuda
,
K.
, 2006, “
Compact Dynamic Hydrogen Electrode Unit as a Reference Electrode for PEMFCs
,”
J. Power Sources
0378-7753,
156
, pp.
284
287
.
21.
Li
,
G.
, and
Pickup
,
P. G.
, 2006, “
Dependence of Electrode Overpotentials in PEM Fuel Cells on the Placement of the Reference Electrode
,”
Electrochem. Solid-State Lett.
1099-0062,
9
, pp.
A249
A251
.
22.
Giner
,
J.
, 1964, “
A Practical Reference Electrode
,”
J. Electrochem. Soc.
0013-4651,
111
, pp.
376
377
.
23.
Bard
,
A. J.
, and
Faulkner
,
L. R.
, 2000,
Electrochemical Methods: Fundamentals and Applications
,
2nd ed.
,
Wiley
,
New York
, pp.
63
74
.
24.
Mitsuda
,
K.
, and
Murahashi
,
T.
, 1991, “
Air and Fuel Starvation of Phosphoric Acid Fuel Cells: A Study Using a Single Cell With Multi-Reference Electrodes
,”
J. Appl. Electrochem.
0021-891X,
21
, pp.
524
530
.
You do not currently have access to this content.