The electroless deposition of PtxRu1x catalysts using hydrazine dihydrochloride or formic acid as the reducing agent in a modified Leaman bath was investigated. The effect of potential on the PtxRu1x composition was investigated by potentiostatically depositing PtxRu1x thin films on gold from acidic chloride electrolytes at potentials between −0.46 V and 0.34 V (versus normal hydrogen electrode). The physical characteristics and elemental composition of the deposits were determined. An empirical model for the deposition process was developed, taking into account reactant concentration, temperature, and surface potential. The model accurately characterized the deposit composition over a wide Pt/Ru range. The surface potential was estimated to be 0.15 V during electroless deposition using formic acid as the reducing agent based on the empirical model. Deviations from the model were found when hydrazine was used as the reducing agent due to the formation of solution phase ruthenium complexes with hydrazine.

1.
Prakash
,
S.
,
Mustain
,
W. E.
,
Park
,
S.
, and
Kohl
,
P. A.
, 2008, “
Phosphorus-Doped Glass Proton Exchange Membranes for Low Temperature Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
175
, pp.
91
97
.
2.
DeLuca
,
N. W.
, and
Elabd
,
Y. A.
, 2006, “
Polymer Electrolyte Membranes for the Direct Methanol Fuel Cell: A Review
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
44
, pp.
2201
2225
.
3.
Rusanov
,
A. L.
,
Likhatchev
,
D.
,
Kostoglodov
,
P. V.
,
Müllen
,
K.
,
Klapper
,
M.
, and
Schmidt
,
M.
, 2005, “
Proton-Exchanging Electrolyte Membranes Based on Aromatic Condensation Polymers
,”
Adv. Polym. Sci.
0065-3195,
179
, pp.
83
134
.
4.
Wang
,
Z.
,
Li
,
X.
,
Zhao
,
C.
,
Ni
,
H.
, and
Na
,
H.
, 2007, “
Sulfonated Poly(ether ether sulfone) Copolymers for Proton Exchange Membrane Fuel Cells
,”
J. Appl. Polym. Sci.
0021-8995,
104
, pp.
1443
1450
.
5.
Yang
,
B.
, and
Manthiram
,
A.
, 2003, “
Sulfonated Poly(ether ether ketone) Membranes for Direct Methanol Fuel Cells
,”
Electrochem. Solid-State Lett.
1099-0062,
6
, pp.
A229
A231
.
6.
Nunes
,
S. P.
,
Ruffmann
,
B.
,
Rikowski
,
E.
,
Vetter
,
S.
, and
Richau
,
R.
, 2002, “
Inorganic Modification of Proton Conductive Polymer Membranes for Direct Methanol Fuel Cells
,”
J. Membr. Sci.
0376-7388,
203
, pp.
215
225
.
7.
Tominaga
,
Y.
,
Hong
,
I.
,
Asai
,
S.
, and
Sumita
,
M.
, 2007, “
Proton Conduction in Nafion Composite Membranes Filled With Mesoporous Silica
,”
J. Power Sources
0378-7753,
171
, pp.
530
534
.
8.
Nogami
,
M.
,
Umi
,
Y.
, and
Kasuga
,
T.
, 2001, “
Proton Conducting Organic-Glass Composites
,”
Fuel Cells
0532-7822,
1
, pp.
181
185
.
9.
Ceiler
,
M. F.
,
Kohl
,
P. A.
, and
Bidstrup
,
S. A.
, 1995, “
Plasma-Enhanced Chemical Vapor Deposition of Silicon Dioxide Deposited at Low Temperatures
,”
J. Electrochem. Soc.
0013-4651,
142
, pp.
2067
2071
.
10.
Park
,
Y.
, and
Nagai
,
M.
, 2001, “
Proton Exchange Nanocomposite Membranes Based on 3–Glycidoxypropyltrimethoxysilane, Silicotungstic Acid and α-Zirconium Phosphate Hydrate
,”
Solid State Ionics
0167-2738,
145
, pp.
149
160
.
11.
Tung
,
S.
, and
Hwang
,
B.
, 2005, “
Synthesis and Characterization of Hydrated Phosphor–Silicate Glass Membrane Prepared by an Accelerated Sol–Gel Process With Water/Vapor Management
,”
J. Mater. Chem.
0959-9428,
15
, pp.
3532
3538
.
12.
Kim
,
H.
,
Prakash
,
S.
,
Mustain
,
W.
, and
Kohl
,
P. A.
, 2007, “
Inorganic Glass Proton Exchange Membranes
,”
Proceedings of the 212th Meeting of the Electrochemical Society
, Washington, DC.
13.
Kim
,
H.
,
Prakash
,
S.
,
Mustain
,
W.
, and
Kohl
,
P. A.
, 2008, “
Glass-Based MEA for Micro Direct Methanol Fuel Cells
,”
Proceedings of the 214th Meeting of the Electrochemical Society
, Honolulu, HI.
14.
Mustain
,
W. E.
,
Kim
,
H.
,
Prakash
,
S.
,
Stark
,
J.
,
Osborn
,
T.
, and
Kohl
,
P. A.
, 2007, “
Platinum–Glass Composite Electrode for Fuel Cell Applications
,”
Electrochem. Solid-State Lett.
1099-0062,
10
, pp.
B210
B213
.
15.
Waszczuk
,
P.
,
Wieckowski
,
A.
,
Zelenay
,
P.
,
Gottesfeld
,
S.
,
Coutanceau
,
C.
,
Léger
,
J.
, and
Lamy
,
C.
, 2001, “
Adsorption of CO Poison on Fuel Cell Nanoparticle Electrodes From Methanol Solutions: A Radioactive Labeling Study
,”
J. Electroanal. Chem.
0022-0728,
511
, pp.
55
64
.
16.
Gasteiger
,
H. A.
,
Markovic
,
N.
,
Ross
,
P. N.
, Jr.
, and
Calrus
,
E. J.
, 1993, “
Methanol Electrooxidation on Well-Characterized Platinum-Ruthenium Bulk Alloys
,”
J. Phys. Chem.
0022-3654,
97
, pp.
12020
12029
.
17.
Dickinson
,
A. J.
,
Carrette
,
L. P. L.
,
Collins
,
J. A.
,
Friedrich
,
K. A.
, and
Stimming
,
U.
, 2004, “
Performance of Methanol Oxidation Catalysts With Varying Pt:Ru Ratio as a Function of Temperature
,”
J. Appl. Electrochem.
0021-891X,
34
, pp.
975
980
.
18.
Mustain
,
W. E.
,
Kim
,
H.
,
Osborn
,
T.
, and
Kohl
,
P. A.
, 2008, “
Deposition of PtxRu1−x Catalysts for Methanol Oxidation in Micro Direct Methanol Fuel Cells
,”
Isr. J. Chem.
0021-2148,
48
(
3-4
), pp.
251
257
.
19.
Raghuveer
,
V.
, and
Manthiram
,
A.
, 2005, “
Mesoporous Carbons With Controlled Porosity as an Electrocatalytic Support for Methanol Oxidation
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
A1504
A1510
.
20.
Deivaraj
,
T. C.
, and
Lee
,
J. Y.
, 2005, “
Preparation of Carbon-Supported PtRu Nanoparticles for Direct Methanol Fuel Cell Applications – A Comparative Study
,”
J. Power Sources
0378-7753,
142
, pp.
43
49
.
21.
Leaman
,
F. H.
, 1972, “
Platinum Chemical Plating
,” U.S. Patent No. 3,698,939.
22.
Leaman
,
F. H.
, 1972, “
Deposition of Platinum by Chemical Reduction of Aqueous Solutions
,”
Plating
0032-1397,
59
, pp.
440
444
.
23.
Latimer
,
W. M.
, 1959,
The Oxidation States of the Elements and Their Potentials in Aqueous Solution
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
24.
Cotton
,
F. A.
, and
Wilkinson
,
G.
, 1972,
Advanced Inorganic Chemistry: A Comprehensive Text
, 2nd ed.,
Wiley-Interscience
,
New York
.
25.
Chatt
,
J.
, 1969, “
Nitrogen Complexes of the Platinum Metals
,”
Platinum Met. Rev.
0032-1400,
13
, pp.
9
14
.
26.
Rice
,
C.
,
Ha
,
S.
,
Masel
,
R. I.
, and
Wieckowski
,
A.
, 2003, “
Catalysts for Direct Formic Acid Fuel Cells
,”
J. Power Sources
0378-7753,
115
, pp.
229
235
.
You do not currently have access to this content.