One of the crucial factors for improving intermediate-temperature solid oxide fuel cell (SOFC) performance relies on the reduction in the activation loss originating from limited electrode reaction kinetics. We investigated the properties and functions of the nanocrystalline interlayer via quantum simulation and electrochemical impedance analyses. Electrode impedances were found to decrease several folds as a result of introducing a nanocrystalline interlayer and this positive impact was the most significant when the interlayer was a highly ionic-conducting nanocrystalline material. Both exchange current density and maximum power density were highest in the ultrathin SOFCs (fabricated with microelectromechanical systems (MEMS) compatible technologies) consisting of a 50 nm thick nano-gadolinia doped ceria (GDC) interlayer. Oxygen vacancy formation energies both at the surface and in the bulk of pure zirconia, ceria, yttria-stabilized zirconia, and GDC were computed from density functional theory, which provided insight on surface oxygen vacancy densities.

1.
Steele
,
B. C. H.
, and
Heinzel
,
A.
, 2001, “
Review Article Materials for Fuel-Cell Technologies
,”
Nature (London)
0028-0836,
414
, pp.
345
352
.
2.
Brandon
,
B. P.
,
Skinner
,
S.
, and
Steele
,
B. C. H.
, 2003, “
Recent Advances in Materials for Fuel Cells
,”
Annu. Rev. Mater. Res.
1531-7331,
33
, pp.
183
213
.
3.
Fleig
,
J.
, 2003, “
Solid Oxide Fuel Cell Cathodes: Polarization Mechanisms and Modeling of the Electrochemical Performance
,”
Annu. Rev. Mater. Res.
1531-7331,
33
, pp.
361
382
.
4.
Adler
,
S. B.
, 2004, “
Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
, pp.
4791
4844
.
5.
Wang
,
S.
,
Kato
,
T.
,
Nagata
,
S.
,
Kaneko
,
T.
,
Iwashita
,
N.
,
Honda
,
T.
, and
Dokiya
,
M.
, 2002, “
Electrodes and Performance Analysis of a Ceria Electrolyte SOFC
,”
Solid State Ionics
0167-2738,
152–153
, pp.
477
484
.
6.
Murray
,
E. P.
,
Sever
,
M. J.
, and
Barnett
,
S. A.
, 2002, “
Electrochemical Performance of (La,Sr)(Co,Fe)O3-(Ce,Gd)O3 Composite Cathodes
,”
Solid State Ionics
0167-2738,
148
, pp.
27
34
.
7.
Tsai
,
T.
, and
Barnett
,
S. A.
, 1997, “
Increased Solid-Oxide Fuel Cell Power Density Using Interfacial Ceria Layers
,”
Solid State Ionics
0167-2738,
98
, pp.
191
196
.
8.
Tanner
,
C. W.
,
Fung
,
K. Z.
, and
Virkar
,
A. V.
, 1997, “
The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance
,”
J. Electrochem. Soc.
0013-4651,
144
, pp.
21
30
.
9.
Chan
,
S. H.
,
Chen
,
X. J.
, and
Khor
,
K. A.
, 2004, “
Cathode Micromodel of Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A164
A172
.
10.
Kresse
,
G.
, and
Hafner
,
J.
, 1994, “
Norm-Conserving and Ultrasoft Pseudopotentials for First-Row and Transition Elements
,”
J. Phys.: Condens. Matter
0953-8984,
6
, pp.
8245
8257
.
11.
Monkhorst
,
H.
, and
Pack
,
J.
, 1976, “
Special Points for Brillouin-Zone Integrations
,”
Phys. Rev. B
0163-1829,
13
, pp.
5188
5192
.
12.
Kresse
,
G.
, and
Joubert
,
D.
, 1999, “
From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method
,”
Phys. Rev. B
0163-1829,
59
, pp.
1758
1775
.
13.
Blöchl
,
P. E.
, 1994, “
Projector Augmented-Wave Method
,”
Phys. Rev. B
0163-1829,
50
, pp.
17953
17979
.
14.
Ceperley
,
D. M.
, and
Alder
,
B. J.
, 1980, “
Ground State of the Electron Gas by a Stochastic Method
,”
Phys. Rev. Lett.
0031-9007,
45
, pp.
566
569
.
15.
Blöchl
,
P. E.
,
Jepsen
,
O.
, and
Andersen
,
O. K.
, 1994, “
Improved Tetrahedron Method for Brillouin-Zone Integrations
,”
Phys. Rev. B
0163-1829,
49
, pp.
16223
16233
.
16.
Pornprasertsuk
,
R.
,
Ramanarayanan
,
P.
,
Musgrave
,
C. B.
, and
Prinz
,
F. B.
, 2005, “
Predicting Ionic Conductivity of Solid Oxide Fuel Cell Electrolyte From First Principles
,”
J. Appl. Phys.
0021-8979,
98
, p.
103513
.
17.
Barsoukov
,
E.
, and
Macdonald
,
J. R.
, 2005,
Impedance Spectroscopy: Theory, Experiment, and Applications
,
2nd ed.
,
Wiley
,
New York
.
18.
Johnson
,
D.
, ZVIEW Software, 2.4a Version, Scribner Associates.
19.
Huang
,
H.
,
Nakamura
,
M.
,
Su
,
P.
,
Fasching
,
R.
,
Saito
,
Y.
, and
Prinz
,
F.
, 2007, “
High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation
,”
J. Electrochem. Soc.
0013-4651,
154
(
1
), pp.
B20
B24
.
20.
Shim
,
J. H.
,
Chao
,
C.-C.
,
Huang
,
H.
, and
Prinz
,
F. B.
, 2007, “
Atomic Layer Deposition of Yttria-Stabilized Zirconia for Solid Oxide Fuel Cells
,”
Chem. Mater.
0897-4756,
19
, pp.
3850
-
3854
.
21.
Knoner
,
G.
,
Reimann
,
K.
,
Rower
,
R.
,
Sodervall
,
U.
, and
Schaofer
,
H. E.
, 2003, “
Enhanced Oxygen Diffusivity in Interfaces of Nanocrystalline ZrO2O2⋅Y2O3
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
, pp.
3870
3873
.
22.
O’Hayre
,
R.
,
Cha
,
S.
,
Colella
,
W.
, and
Prinz
,
F. B.
, 2006,
Fuel Cell Fundamentals
,
Wiley
,
New York
.
23.
Huang
,
H.
,
Gur
,
T. M.
,
Saito
,
Y.
, and
Prinz
,
F.
, 2006, “
High Ionic Conductivity in Ultrathin Nanocrystalline Gadolinia-Doped Ceria Films
,”
Appl. Phys. Lett.
0003-6951,
89
(
14
), p.
143107
.
24.
De Souza
,
R. A.
, 2006, “
A Universal Empirical Expression for the Isotope Surface Exchange Coefficients (k*) of Acceptor-Doped Perovskite and Fluorite Oxides
,”
Phys. Chem. Chem. Phys.
1463-9076,
8
, pp.
890
897
.
25.
Campbell
,
C. T.
, 2003, “
Surface Science: Enhanced: Waltzing with O2
,”
Science
0036-8075,
299
, p.
357
.
26.
Henderson
,
M. A.
,
Epling
,
W. S.
,
Perkins
,
C. L.
,
Peden
,
C. H. F.
, and
Diebold
,
U.
, 1999, “
Interaction of Molecular Oxygen With the Vacuum-Annealed TiO2(110) Surface: Molecular and Dissociative Channels
,”
J. Phys. Chem. B
1089-5647,
103
, pp.
5328
5337
.
27.
Trovarelli
,
A.
, 2002,
Catalysis by Ceria and Related Materials
,
Imperial College Press
,
London
.
28.
Fu
,
Q.
,
Saltsburg
,
H.
, and
Flyzani-Stephanapoulos
,
M.
, 2003, “
Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts
,”
Science
0036-8075,
301
, pp.
935
938
.
29.
Simner
,
S. P.
,
Bonnett
,
J. F.
,
Canfield
,
N. L.
,
Meinhardt
,
K. D.
,
Sprenkle
,
V. L.
, and
Stevenson
,
J. W.
, 2002, “
Optimized Lanthanum Ferrite-Based Cathodes for Anode-Supported SOFCs
,”
Electrochem. Solid-State Lett.
1099-0062,
5
, pp.
A173
A175
.
30.
Colomer
,
M. T.
,
Steele
,
B. C. H.
, and
Kilner
,
J. A.
, 2002, “
Structural and Electrochemical Properties of the Sr0.8Ce0.1Fe0.7Co0.3O3−δ Perovskite as Cathode Material for ITSOFCs
,”
Solid State Ionics
0167-2738,
147
, pp.
41
48
.
31.
Gorte
,
R. J.
, 2005, “
Recent Developments Towards Commercialization of Solid Oxide Fuel Cells
,”
AIChE J.
0001-1541,
51
(
9
), pp.
2377
2381
.
32.
Mogensen
,
M.
,
Sammes
,
N. M.
, and
Tompsett
,
G. A.
, 2000, “
Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria
,”
Solid State Ionics
0167-2738,
129
, pp.
63
94
.
33.
Tsunekawa
,
S.
,
Fukuda
,
T.
, and
Kasuya
,
A.
, 2000, “
X-ray Photoelectron Spectroscopy of Monodisperse CeO2−x Nanoparticles
,”
Surf. Sci.
0039-6028,
457
, pp.
L437
L440
.
34.
Wu
,
L.
,
Wiesmann
,
H. J.
,
Moodenbaugh
,
A. R.
,
Klie
,
R. F.
,
Zhu
,
Y.
,
Welch
,
D. O.
, and
Suenaga
,
M.
, 2004, “
Oxidation State and Lattice Expansion of CeO2−x Nanoparticles as a Function of Particle Size
,”
Phys. Rev. B
0163-1829,
69
, p.
125415
.
You do not currently have access to this content.