This paper deals with the state-of-the-art of air management in proton exchange membrane fuel cell (PEMFC), which is a challenge because commercial compressors and humidification systems are not suitable for automotive applications. Major tasks and requirements for compression and humidification subsystems have been introduced, showing that compression and humidification subsystems cannot be decoupled. A higher working pressure around 2.5 bar is recommended because it permits the PEMFC to have a higher efficiency, as well as a lighter stack and a lower volume than an equivalent PEMFC working at a lower pressure; moreover, the water necessary for humidifying the membrane decreases, resulting in a simple management. For high pressure fuel cells, centrifugal compressors or positive displacement compressors with internal compression have to be preferred than those with external compression because they offer a better efficiency. The built-in compression ratio has to be as close as possible to the fuel cell working pressure to ensure maximum efficiency. Downstream or integrated direct water injection has shown many advantages for air humidification compared with other methods because of its controllability, low power consumption, and compactness.

1.
Pukrushpan
,
J. T.
,
Stefanopoulou
,
A. G.
, and
Peng
,
H.
, 2004,
Control of Fuel Cell Power Systems: Principle, Modeling Analysis and Feedback Design, Advances in Industrial Control
,
Springer
.
2.
2007, “
Hydrogen, Fuel Cells and Infrastructure Technologies Program, Multi-Year Research, Development and Demonstration Plan
,”
U.S. Department of Energy
, available online at www1.eere.energy.gov/hydrogenandfuelcells/mypp/www1.eere.energy.gov/hydrogenandfuelcells/mypp/
3.
Pischinger
,
S.
, and
Lang
,
O.
, 2003,
Handbook of Fuel Cells, Fundamentals, Technology and Applications
, Vol.
4
,
Wiley
,
New York
, pp.
727
741
.
4.
Blunier
,
B.
, and
Miraoui
,
A.
, 2005, “
Optimization and Air Supply Management of a Polymer Electrolyte Fuel Cell
,”
Proceedings of the IEEE Conference on Vehicular Power and Propulsion (VPP)
.
5.
Pischinger
,
S.
,
Schönfelder
,
C.
,
Bornscheuer
,
W.
,
Kindl
,
H.
, and
Wiartalla
,
A.
, 2001, “
Integrated Air Supply and Humidification Concepts for Fuel Cell Systems
,” SAE Paper No. 2001-01-0233.
6.
Blunier
,
B.
, and
Miraoui
,
A.
, 2008, “
Modelling of Fuel Cells Using Multi-Domain VHDL-AMS Language
,”
J. Power Sources
0378-7753,
177
(
2
), pp.
434
450
.
7.
Pischinger
,
S.
,
Schönfelder
,
C.
, and
Ogrzewalla
,
J.
, 2006, “
Analysis of Dynamic Requirements for Fuel Cell Systems for Vehicle Applications
,”
J. Power Sources
0378-7753,
154
, pp.
420
427
.
8.
Blunier
,
B.
,
Pucci
,
M.
,
Cirrincione
,
G.
, and
Miraoui
,
A.
, 2008, “
A Scroll Compressor With a High Performance Induction Motor Drive for the Air Management of a PEMFC System for Automotive Applications
,”
IEEE Trans. Ind. Appl.
0093-9994,
44
(
6
), pp.
1966
1976
.
9.
Blunier
,
B.
,
Pucci
,
M.
,
Cirrincione
,
G.
,
Cirrincione
,
M.
, and
Miraoui
,
A.
, 2008, “
A Scroll Compressor With a High Performance Sensorless Induction Motor Drive for the Air Management of a PEMFC System for Automotive Applications
,”
IEEE Trans. Veh. Technol.
0018-9545,
57
(
6
), pp.
3413
3427
.
10.
Rodatz
,
P. H.
, 2003, “
Dynamics of the Polymer Electrolyte Fuel Cell: Experiments and Model-Based Analysis
,” Ph.D. thesis, Swiss Federal Institute of Technology, Zurich.
11.
Barbir
,
F.
, 2005,
PEM Fuel Cells, Theory and Practice, Sustainable World
,
Elsevier
,
New York
.
12.
Zhao
,
Y.
,
Li
,
L.
,
Wu
,
H.
, and
Shu
,
P.
, 2005, “
Theoretical and Experimental Studies of Water Injection Scroll Compressor in Automotive Fuel Cell Systems
,”
Energy Convers. Manage.
0196-8904,
46
, pp.
1379
1392
.
13.
Pischinger
,
S.
,
Schönfelder
,
C.
,
Lang
,
O.
, and
Kindl
,
H.
, 2002, “
Development of Fuel Cell System Air Management Utilizing H.I.L. Tools
,” SAE Paper No. 2002-01-0409.
14.
Cunningham
,
J. M.
,
Hoffman
,
M. A.
, and
Friedman
,
D. J.
, 2001, “
A Comparison of High-Pressure and Low-Pressure Operation of PEM Fuel Cell Systems
,” SAE Paper No. 2001-01-0538.
15.
Gelfi
,
S.
,
Stefanopoulou
,
A.
,
Pukrushpan
,
J.
, and
Peng
,
H.
, 2003, “
Dynamics of Low-Pressure and High-Pressure Fuel Cell Air Supply Systems
,”
Proceedings of the 2003 American Control Conference
, Vol.
3
, pp.
2049
2054
.
16.
Wiartalla
,
A.
,
Pischinger
,
S.
,
Bornscheuer
,
W.
,
Fieweger
,
K.
, and
Ogrzewalla
,
J.
, 2000, “
Compressor Expander Units for Fuel Cell Systems
,” SAE Paper No. 2000-01-0380.
17.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
New York
.
18.
Suh
,
K. -W.
, and
Stefanopoulou
,
A. G.
, 2007, “
Performance Limitations of Air Flow Control in Power-Autonomous Fuel Cell Systems
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
(
3
), pp.
465
473
.
19.
Vahidi
,
A.
,
Kolmanovsky
,
I.
, and
Stefanopoulou
,
A.
, 2007, “
Constraint Handling in a Fuel Cell System: A Fast Reference Governor Approach
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
(
1
), pp.
86
98
.
20.
Zhao
,
Y.
,
Liansheng
,
L.
,
Jiang
,
S.
,
Wei
,
Z.
, and
Pengcheng
,
S.
, 2003, “
Research on Oil-Free Air Scroll Compressor With High Speed in 30 kW Fuel Cell
,”
Appl. Therm. Eng.
1359-4311,
23
(
23
), pp.
593
603
.
21.
Zwyssig
,
C.
,
Duerr
,
M.
,
Hassler
,
D.
, and
Kolar
,
J.
, 2007, “
An Ultra-High-Speed, 500000 rpm, 1 kW Electrical Drive System
,”
Proceedings of the Power Conversion Conference (PCC ‘07)
, Nagoya, Japan, pp.
1577
1583
.
22.
Danfoss Turbocor
, “
Compresseur centrifuge haute vitesse (40 000 tr/min) pour des systèmes de climatisation
,” http://www.turbocor.comhttp://www.turbocor.com
23.
Walton
,
J. F.
, II
,
Tomeszewski
,
M.
,
Heshmat
,
C. A.
, and
Heshmat
,
H. A.
, 2006, “
On the Development of an Oil-Free Electric Turbocharger for Fuel Cells
,”
Proceedings of 2006 ASME Turbo Expo: Power for Land, Sea and Air
, Barcelona, Spain.
24.
Mohawk Innovative Technology Inc.
, “
Motorized Turbocompressor/Blower for Automotive Fuel Cells, Oil-Free High-Speed Motors
,” http://www.miti.cchttp://www.miti.cc
25.
Krishnan
,
R.
, 2001,
Switched Reluctance Motor Drives. Modeling, Simulation, Analysis, Design, and Applications
,
CRC
,
Boca Raton, FL
.
26.
Fodorean
,
D.
,
Viorel
,
I.
,
Djerdir
,
A.
, and
Miraoui
,
A.
, 2008, “
Performances for a Synchronous Machine With Optimized Efficiency While Wide Speed Domain is Attempted
,”
IET Electric Power Applications
1751-8660,
2
(
1
), pp.
64
70
.
27.
Fodorean
,
D.
,
Djerdir
,
A.
,
Viorel
,
I.
, and
Miraoui
,
A.
, 2007, “
A Double Excited Synchronous Machine for Direct Drive Application—Design and Prototype Tests
,”
IEEE Trans. Energy Convers.
0885-8969,
22
(
3
), pp.
656
665
.
28.
Bao
,
C.
,
Ouyang
,
M.
, and
Yi
,
B.
, 2006, “
Modeling and Optimization of the Air System in Polymer Exchange Membrane Fuel Cell Systems
,”
J. Power Sources
0378-7753,
156
, pp.
232
243
.
29.
Oscarsson
,
J.
, 2003, “
Power Recovery by a Twin Screw Expander in a Fuel Cell Application
,” SAE Paper No. 2002-01-0100.
30.
Badami
,
M.
, and
Caldera
,
C.
, 2001, “
Dynamic Model of a Load-Following Fuel Cell Vehicle: Impact of the Air System
,”
Fuel Cell Power for Transportation
,
SAE
,
Warrendale, PA
.
31.
Cunningham
,
J.
,
Hoffman
,
M.
,
Eggert
,
A.
, and
Friedman
,
D.
, 2000, “
The Implication of Using an Expander (Turbine) in an Air System of a PEM Fuel Cell Engine
,”
Proceedings of the Electric Vehicle Symposium (EVS-17)
, Montreal, Quebec.
32.
2002, “
Hydrogen, Fuel Cells and Infrastructure Technologies Program, Annual Progress Report
,”
U.S. Department of Energy
, available online at http://www1.eere.energy.gov/hydrogenandfuelcells/annual_report.htmlhttp://www1.eere.energy.gov/hydrogenandfuelcells/annual_report.html
33.
McTaggart
,
P.
, and
Davis
,
P.
, 2004, “
Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications
,” Final Technical Report for the U.S. Department of Energy,
Tiax LLC
, Report No. DE-FC36-01AL67603.
34.
Tirnovan
,
R.
,
Giurgea
,
S.
,
Miraoui
,
A.
, and
Cirrincione
,
M.
, 2008, “
Surrogate Model for Proton Exchange Membrane Fuel Cell (PEMFC)
,”
J. Power Sources
0378-7753,
175
(
2
), pp.
773
778
.
35.
Tirnovan
,
R.
,
Giurgea
,
S.
,
Miraoui
,
A.
, and
Cirrincione
,
M.
, 2008, “
Surrogate Modelling of Compressor Characteristics for Fuel Cell Applications
,”
Appl. Energy
0306-2619,
85
(
5
), pp.
394
403
.
You do not currently have access to this content.