An accurate low order model (mean value model) that captures main water transport mechanisms through the components of a PEM fuel cell was developed. Fast simulation time was achieved through a lumped approach in modeling the space-dependent phenomena. Evaporation and capillarity were assumed to be the predominant mechanisms of water flow through the gas diffusion media. The innovative features of the model are not only to simulate the water transport inside the porous media with relative simplicity, but also to simulate the water transport at the interface between the gas diffusion layer and gas flow channel. In order to preserve a light computational burden, the complex air flow-droplet interaction was modeled with several simplifying assumptions, and with the support of measured data. The physics that characterizes the single droplet-air flow interaction was analyzed with an experimental apparatus constructed to study the droplet growth and detachment process. Furthermore, the experimental findings were exploited to feed the numerical model with the missing theoretical information, and empirical submodels to guarantee accuracy. Thanks to the followed fast computational time of the mean value approach, the model is suitable for fuel cell design and optimization, as well as diagnosis and control strategies development studies.

1.
McKay
,
D. A.
,
Ott
W. T.
,
Stefanopoulou
,
A. G.
, 2005, “
Modeling, Parameter Identification, and Validation of Reactant and Water Dynamics for a Fuel Cell Stack
,”
Proceedings of the IMECE–2005
, Paper No. IMECE2005-81484.
2.
Pasaogullari
,
U.
, and
Wang
,
C. -Y.
, 2004, “
Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
151
(
3
), pp.
A399
A406
.
3.
Pasaogullari
,
U.
, and
Wang
,
C. -Y.
, 2005, “
Two-Phase Modeling and Flooding Prediction of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
152
(
2
), pp.
A380
A390
.
4.
Pasaogullari
,
U.
, and
Wang
,
C. -Y.
, 2004, “
Two-Phase Transport and the Role of Micro-Porous Layer in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
49
, pp.
4359
4369
.
5.
Promislow
,
K.
,
Stockie
,
J.
, and
Wetton
,
B.
, 2006, “
A Sharp Interface Reduction for Multiphase Transport in a Porous Fuel Cell Electrode
,”
Proc. R. Soc. London, Ser. A
1364-5021,
462
, (
2067
), pp.
789
816
.
6.
Nam
,
J. H.
, and
Kaviany
,
M.
, 2003, “
Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4595
4611
.
7.
Chen
,
K. S.
,
Hickner
,
M. A.
, and
Noble
,
D. R.
, 2005, “
Simplified Models for Predicting the Onset of Liquid Water Droplet Instability at the Gas Diffusion Layer/Gas Flow Channel Interface
,”
Int. J. Energy Res.
0363-907X,
29
, pp.
1113
1132
.
8.
Kumbur
,
E. C.
,
Sharp
,
K. V.
, and
Mench
,
M. M.
, 2006, “
Liquid Droplet Behavior and Instability in a Polymer Electrolyte Fuel Cell Flow Channel
,”
J. Power Sources
0378-7753,
161
, pp.
333
345
.
9.
Theodorakakos
,
A.
,
Ous
,
T.
,
Gavaises
,
M.
,
Nouri
,
J. M.
,
Nikolopoulos
,
N.
, and
Yanagihara
,
H.
, 2006, “
Dynamics of Water Droplets Detached From Porous Surfaces of Relevance to PEM Fuel Cells
,”
J. Colloid Interface Sci.
0021-9797,
300
, pp.
673
687
.
10.
Bazylak
,
A.
,
Sinton
,
D.
, and
Djilali
,
N.
, 2008, “
Dynamic Water Transport and Droplet Emergence in PEMFC Gas Diffusion Layers
,”
J. Power Sources
0378-7753,
176
, pp.
240
246
.
11.
Zhu
,
X.
,
Sui
,
P. C.
, and
Djilali
,
N.
, 2007, “
Dynamic Behaviour of Liquid Water Emerging From a GDL Pore Into a PEMFC Gas Flow Channel
,”
J. Power Sources
0378-7753,
172
, pp.
287
295
.
12.
Chen
,
K. S.
, 2008, “
Modeling Water-Droplet Detachment From GDL/Channel Interfaces in PEM Fuel Cells
,” ASME Paper No. GT2008-65137.
13.
Yang
,
X. G.
,
Zhang
,
F. Y.
,
Lubawy
,
A. L.
, and
Wang
,
C. Y.
, 2004, “
Visualization of Liquid Water Transport in a PEFC
,”
Electrochem. Solid-State Lett.
1099-0062,
7
(
11
), pp.
A408
A411
.
14.
Tüber
,
K.
,
Pócza
,
D.
, and
Hebling
,
C.
, 2003, “
Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell
,”
J. Power Sources
0378-7753,
124
, pp.
403
414
.
15.
Spernjak
,
D.
,
Advani
,
S.
, and
Prasad
,
A.
, 2006, “
Experimental Investigation of Liquid Water Formation and Transport in a Transparent Single-Serpentine PEM Fuel Cell
,” ASME Paper No. GT2006-97271.
16.
Ous
,
T.
, and
Arcoumanis
,
C.
, 2007, “
Visualisation of Water Droplets During the Operation of PEM Fuel Cells
,”
J. Power Sources
0378-7753,
173
, pp.
137
148
.
17.
Pekula
,
N.
,
Heller
,
K.
,
Chuang
,
P. A.
,
Turhan
,
A.
,
Mench
,
M. M.
,
Brenizer
,
J. S.
, and
Unlü
,
K.
, 2005, “
Study of Water Distribution and Transport in a Polymer Electrolyte Fuel Cell Using Neutron Imaging
,”
Nucl. Instrum. Methods Phys. Res. A
0168-9002,
542
, pp.
134
141
.
18.
Kramer
,
D.
,
Zhang
,
J.
,
Shimoi
,
R.
,
Lehmann
,
E.
,
Wokaun
,
A.
,
Shinohara
,
K.
, and
Scherer
,
G. G.
, 2005, “
In Situ Diagnostic of Two-Phase Flow Phenomena in Polymer Electrolyte Fuel Cells by Neutron Imaging Part A. Experimental, Data Treatment, and Quantification
,”
Electrochim. Acta
0013-4686,
50
, pp.
2603
2614
.
19.
Hickner
,
M. A.
,
Siegel
,
N. P.
,
Chen
,
K. S.
,
Hussey
,
D. S.
,
Jacobson
,
D. L.
, and
Arif
,
M.
, 2008, “
In-Situ High Resolution Neutron Radiography of Cross-Sectional Liquid Water Profiles in PEM Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
155
(
4
), pp.
B427
B434
.
20.
Hickner
,
M. A.
,
Siegel
,
N. P.
,
Chen
,
K. S.
,
Hussey
,
D. S.
,
Jacobson
,
D. L.
, and
Arif
,
M.
, 2008, “
Understanding the Liquid Water Distribution and Removal Phenomena in an Operating PEM Fuel Cell Via Neutron Radiography
,”
J. Electrochem. Soc.
0013-4651,
155
(
3
), pp.
B294
B302
.
21.
Stumper
,
J.
,
Löhr
,
M.
, and
Hamada
,
S.
, 2005, “
Diagnostic Tools for Liquid Water in PEM Fuel Cells
,”
J. Power Sources
0378-7753,
143
, pp.
150
157
.
22.
Kannan
,
M. A.
, and
Vinod
,
P. V. P.
,
Munukutla
,
L.
, and
Ghasemi-Nejhadb
,
M. N.
, 2007, “
Nanostructured Gas Diffusion and Catalyst Layers for Proton Exchange Membrane Fuel Cells
,”
Electrochem. Solid-State Lett.
1099-0062,
10
(
3
), pp.
B47
B50
.
23.
Tang
,
J. M.
,
Itkis
,
M. E.
,
Wang
,
C.
,
Wang
,
X.
,
Yan
,
Y.
, and
Haddon
,
R. C.
, 2006, “
Carbon Nanotube Free-Standing Membrane as Gas Diffusion Layer in Hydrogen Fuel Cells
,”
Micro & Nano Letters
,
1
, pp.
62
65
.
24.
Litster
,
S.
, and
McLean
,
G.
, 2004, “
PEM Fuel Cell Electrodes
,”
J. Power Sources
0378-7753,
130
, pp.
61
76
.
25.
Esposito
,
A.
,
Guezennec
,
Y. G.
, and
Pianese
,
C.
, 2008, “
A Low Order Control-Oriented Model of Liquid Water Transport in PEM Fuel Cell
,”
ASME International Mechanical Engineering Congress and Exposition
, Boston, MA, Oct. 31–Nov. 6.
26.
Kumbur
,
E. C.
,
Sharp
,
K. V.
, and
Mench
,
M. M.
, 2007, “
On the Effectiveness of Leverett Approach for Describing the Water Transport in Fuel Cell Diffusion Media
,”
J. Power Sources
0378-7753,
168
, pp.
356
368
.
27.
Perry
,
R. H.
, and
Green
,
W.
, 1998,
Perry’s Chemical Engineers’ Handbook
,
7th ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.