During the operation of solid oxide fuel cells (SOFCs) the Ni base anode and/or Ni-mesh is in direct contact with the ferritic steel interconnect or the metallic substrate. For assuring long-term stack operation a diffusion barrier layer with high electronic conductivity may be needed to impede interdiffusion between the various components. A pre-oxidation layer on the ferritic steel turned out to be not viable as a barrier layer since a Ni-layer tends to dissociate the oxide scale. Therefore the potential of ceria as a diffusion barrier layer for the anode side of the SOFC was estimated. The barrier properties of a ceria coating between the Ni and the ferritic steel Crofer 22 APU were tested for 1000 h in Ar4H22H2O at 800°C. Conductivity experiments were performed in the same atmosphere at different temperatures. After long-term exposures no indication of interdiffusion between Ni and ferritic steel could be detected, however, sputtered coatings on ferritic steel substrates showed significantly lower conductivities than bulk ceria samples because of void formation between the ceria and the oxide on the steel surface. The latter could be prevented by an intermediate copper layer, which resulted in overall area specific resistance values lower than 20mΩcm2 after 100 h exposure at 800°C.

1.
Quadakkers
,
W. J.
,
Piron-Abellan
,
J.
,
Shemet
,
V.
, and
Singheiser
,
L.
, 2003, “
Metallic Interconnectors for Solid Oxide Fuel Cells—A Review
,”
Mater. High. Temp.
0960-3409,
20
(
2
), pp.
115
127
.
2.
Konysheva
,
E.
,
Laatsch
,
J.
,
Wessel
,
E.
,
Tietz
,
F.
,
Christiansen
,
N.
,
Singheiser
,
L.
, and
Hilpert
,
K.
, 2006, “
Influence of Different Perovskite Interlayers on the Electrical Conductivity Between La0.65Sr0.3MnO3 and Fe/Cr-Based Steels
,”
Solid State Ionics
0167-2738,
177
(
9–10
), pp.
923
930
.
3.
Yang
,
Z.
,
Xia
,
G. -G.
,
Maupin
,
G. D.
, and
Stevenson
,
J. W.
, 2006, “
Conductive Protection Layers on Oxidation Resistant Alloys for SOFC Interconnect Applications
,”
Surf. Coat. Technol.
0257-8972,
201
(
7
), pp.
4476
4483
.
4.
Franco
,
T.
,
Ruckdäschel
,
R.
,
Lang
,
M.
,
Schiller
,
G.
, and
Szabo
,
P.
, 2006,
Diffusion and Protecting Barrier Layers in a Substrate Supported SOFC Concept
, Lucerne, European Fuel Cell Forum.
5.
Brandner
,
M.
, 2006, “
Herstellung einer Metall/Keramik-Verbundstruktur für Hochtemperaturbrennstoffzellen in mobilen Anwendungen
,” Berichte des Forschungszentrums Jülich Report No. JUEL-4238.
6.
Brandner
,
M.
,
Bram
,
M.
,
Sebold
,
D.
,
Uhlenbruck
,
S.
,
Ertl
,
S. T.
,
Höfler
,
T.
,
Wetzel
,
F. J.
,
Buchkremer
,
H. P.
, and
Stöver
,
D.
, 2005,
Inhibition of Diffusion Between Metallic Substrates and Ni-YSZ-Anodes During Sintering
(
Proceedings of the Electrochemical Society
, PV 2005-07),
S. C.
Singhal
and
J.
Mizusaki
, eds.,
The Electrochemical Society
,
Pennington, NJ
, pp.
1235
1243
.
7.
Visco
,
S. J.
,
Jacobson
,
C. P.
,
Villareal
,
I.
,
Leming
,
A.
,
Matus
,
Y.
, and
Jonghe
,
L. C. D.
, 2003,
Inhibition of Diffusion Between Metallic Substrates and Ni-YSZ-Anodes During Sintering
(
Proceedings of the Electrochemical Society
, PV 2003-07),
S. C.
Singhal
and
M.
Dokiya
, eds.,
The Electrochemical Society
,
Pennington, NJ
, pp.
1040
1050
.
8.
Singhal
,
S. C.
, and
Kendall
,
K.
, 2006,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
,
Oxford, UK
.
9.
Pirón Abellán
,
F. J.
, and
Quadakkers
,
W. J.
, 2005, “
Development of Ferritic Steels for Application as Interconnect Materials for Intermediate Temperature Solid Oxide Fuel Cells (SOFCs)
,” Berichte des Forschungszentrums Jülich Report No. JUEL-4170.
10.
Fu
,
Q. X.
,
Tietz
,
F.
, and
Stöver
,
D.
, 2006, “
La0.4Sr0.6Ti1−xMnxO3 Perovskites as Anode Materials for Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
153
(
4
), pp.
D74
D83
.
11.
Holt
,
A.
, and
Kofstad
,
P.
, 1994, “
Electrical Conductivity and Defect Structure of Cr2O3. II. Reduced Temperatures (<∼1000°C)
,”
Solid State Ionics
0167-2738,
69
(
2
), pp.
137
143
.
12.
Hui
,
S.
, and
Petric
,
A.
, 2001, “
Conductivity and Stability of SrVO3 and Mixed Perovskites at Low Oxygen Partial Pressures
,”
Solid State Ionics
0167-2738,
143
(
3–4
), pp.
275
283
.
13.
Hui
,
S.
, and
Petric
,
A.
, 2002, “
Electrical Properties of Yttrium-Doped Strontium Titanate Under Reducing Conditions
,”
J. Electrochem. Soc.
0013-4651,
149
(
1
), pp.
J1
J10
.
14.
Hui
,
S.
, and
Petric
,
A.
, 2002, “
Electrical Conductivity of Yttrium-Doped SrTiO3: Influence of Transition Metal Additives
,”
Mater. Res. Bull.
0025-5408,
37
(
7
), pp.
1215
1231
.
15.
Kolodiazhnyi
,
T.
, and
Petric
,
A.
, 2005, “
The Applicability of Sr-Deficient n-Type SrTiO3 for SOFC Anodes
,”
J. Electroceram.
1385-3449,
15
(
1
), pp.
5
11
.
16.
Marina
,
O. A.
,
Canfield
,
N. L.
, and
Stevenson
,
J. W.
, 2002, “
Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-Doped Strontium Titanate
,”
Solid State Ionics
0167-2738,
149
(
1–2
), pp.
21
28
.
17.
Marucco
,
J. F.
,
Gautron
,
J.
, and
Lemasson
,
P.
, 1981, “
Thermogravimetric and Electrical Study of Non-Stoichiometric Titanium Dioxide TiO2−x, Between 800 and 1100°C
,”
J. Phys. Chem. Solids
0022-3697,
42
(
5
), pp.
363
367
.
18.
Naik
,
I. K.
, and
Tien
,
T. Y.
, 1978, “
Small-Polaron Mobility in Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
0022-3697,
39
(
3
), pp.
311
315
.
19.
Sakai
,
N.
,
Horita
,
T.
,
Xiong
,
Y. P.
,
Yamaji
,
K.
,
Kishimoto
,
H.
,
Brito
,
M. E.
,
Yokokawa
,
H.
, and
Maruyama
,
T.
, 2005, “
Structure and Transport Property of Manganese-Chromium-Iron Oxide as a Main Compound in Oxide Scales of Alloy Interconnects for SOFCs
,”
Solid State Ionics
0167-2738,
176
(
7–8
), pp.
681
686
.
20.
Tuller
,
H. L.
, and
Nowick
,
A. S.
, 1979, “
Defect Structure and Electrical Properties of Nonstoichiometric CeO2 Single Crystals
,”
J. Electrochem. Soc.
0013-4651,
126
(
2
), pp.
209
217
.
21.
Mogensen
,
M.
,
Sammes
,
N. M.
, and
Tompsett
,
G. A.
, 2000, “
Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria
,”
Solid State Ionics
0167-2738,
129
(
1–4
), pp.
63
94
.
22.
Chen
,
X.
,
Hou
,
P. Y.
,
Jacobson
,
C. P.
,
Visco
,
S. J.
, and
De Jonghe
,
L. C.
, 2005, “
Protective Coating on Stainless Steel Interconnect for SOFCs: Oxidation Kinetics and Electrical Properties
,”
Solid State Ionics
0167-2738,
176
(
5–6
), pp.
425
433
.
23.
Ertl
,
S.
, 2006, “
Untersuchung zur oxidationsbedingten Lebensdauer von Chromstählen für die Anwendung in der Hochtemperaturbrennstoffzelle (SOFC)
,” Ph.D. thesis, RWTH, Aachen, Germany.
24.
Huczkowski
,
P.
, and
Quadakkers
,
W. J.
, 2007, “
Effect of Geometry and Composition of Cr Steels on Oxide Sale Properties Relevant for Interconnector Applications in Solid Oxide Fuel Cells (SOFCs)
,” Report Forschungszentrums Jülich, Reihe Energietechnik/Energy Technology, Vol.
65
.
25.
Froitzheim
,
J.
, 2008, “
Ferritic Steel Interconnectors and Their Interactions With Ni Base Anodes in Solid Oxide Fuel Cells (SOFC)
,” Ph.D. thesis, RWTH, Aachen, Germany.
26.
Niewolak
,
L.
,
Quadakkers
,
W. J.
, and
Singheiser
,
L.
, 2006, “
Interconnector for a Fuel Cell Stack, and Method for Production
,” Deutsche Patentanmeldung DE 10 2006 024 039 A1.
27.
Zhou
,
X. -D.
,
Huebner
,
W.
, and
Anderson
,
H. U.
, 2005, “
Size Effect on the Electronic Properties of Doped and Undoped Ceria
,”
Defect Diffus. Forum
1012-0386,
242–244
, pp.
277
289
.
28.
Powell
,
C. F.
,
Oxley
,
J. H.
, and
Blocher
,
J. M.
, 1966,
Vapor Deposition
(
The Electrochemical Society Series
),
Wiley
,
New York
.
29.
Huang
,
K.
,
Hou
,
P. Y.
, and
Goodenough
,
J. B.
, 2000, “
Characterization of Iron-Based Alloy Interconnects for Reduced Temperature Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
129
(
1–4
), pp.
237
250
.
30.
Lu
,
F. -H.
,
Newhouse
,
M. L.
,
Dieckmann
,
R.
, and
Xue
,
J.
, 1995, “
Platinum-A Non-Inert Material Reacting With Oxides
,”
Solid State Ionics
0167-2738,
75
, pp.
187
192
.
31.
Shemet
,
V.
, 2007, Forschungszentrum Jülich, unpublished.
You do not currently have access to this content.