Ceramic reactors, which convert materials and energy electrochemically, are expected to solve various environmental problems, and the use of a microreactor design was shown to realize a high performance reactor with high thermal durability, operable at lower temperatures. Our research project, “Advanced Ceramic Reactor,” supported by the New Energy and Industrial Technology Development Organization, targets to develop new fabrication technology for such microreactors and modules using conventional, commercially available materials. In this study, fabrication technology of microtubular ceramic reactors have been investigated for aiming solid oxide fuel cell (SOFC) applications such as small distributed power generators, auxiliary power units for vehicles, and portable power sources. So far, microtubular SOFCs under a diameter of 1 mm using doped ceria electrolyte, and Ni–ceria based cermet for tubular support has been successfully developed and evaluated. The single microtubular SOFC showed a cell performance of 0.46W/cm2 (at 0.7 V) at 550°C with H2 fuel. The bundle design for such tubular cell was also proposed and fabricated. The discussion will cover the fabrication technology of a single tubular SOFC and bundle, and the optimization of the cell and bundle design by considering gas pressure loss and current collecting loss.

1.
Yamamoto
,
O.
, 2000, “
Solid Oxide Fuel Cells: Fundamental Aspects and Prospects
,”
Electrochim. Acta
0013-4686,
45
, pp.
2423
2435
.
2.
Minh
,
N. Q.
, 1993, “
Ceramic Fuel Cells
,”
J. Am. Ceram. Soc.
0002-7820,
76
, pp.
563
588
.
3.
Singhal
,
S. C.
, 2002, “
Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications
,”
Solid State Ionics
0167-2738,
152–153
, pp.
405
410
.
4.
de Souza
,
S.
,
Visco
,
S. J.
, and
De Johnge
,
L. C.
, 1997, “
Reduced-Temperature Solid Oxide Fuel Cell Based on YSZ Thin-Film Electrolyte
,”
J. Electrochem. Soc.
0013-4651,
144
, pp.
L35
L37
.
5.
Virkar
,
A. V.
,
Chen
,
J.
,
Tanner
,
C. W.
, and
Kim
,
J. W.
, 2000, “
The Role of Electrode Microstructure on Activation and Concentration Polarizations in Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
131
, pp.
189
198
.
6.
Steele
,
B. C. H.
, 1992, “
Oxygen Ion Conductors and Their Technological Applications
,”
Mater. Sci. Eng., B
0921-5107,
13
, pp.
79
87
.
7.
Ishihara
,
T.
,
Matsuda
,
H.
, and
Takita
,
Y.
, 1995, “
Effects of Rare Earth Cations Doped for La Site on the Oxide Ionic Conductivity of LaGaO3-Based Perovskite Type Oxide
,”
Solid State Ionics
0167-2738,
79
, pp.
147
151
.
8.
Shao
,
Z.
, and
Haile
,
S. M.
, 2004, “
A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells
,”
Nature (London)
0028-0836,
431
, pp.
170
173
.
9.
Steele
,
B. C. H.
, 2000, “
Appraisal of Ce1-yGdyO2-y/2 Electrolytes for IT-SOFC Operation at 500°C
,”
Solid State Ionics
0167-2738,
129
, pp.
95
110
.
10.
Huang
,
H.
,
Nakamura
,
M.
,
Su
,
P. C.
,
Fasching
,
R.
,
Saito
,
Y.
, and
Prinz
,
F. B.
, 2007, “
High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation
,”
J. Electrochem. Soc.
0013-4651,
154
(
1
), pp.
B20
B24
.
11.
Eguchi
,
K.
,
Setoguchi
,
T.
,
Inoue
,
T.
, and
Arai
,
H.
, 1992, “
Electrical Properties of Ceria-Based Oxides and Their Application to Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
52
, pp.
165
172
.
12.
Hibino
,
T.
,
Hashimoto
,
A.
,
Asano
,
K.
,
Yano
,
M.
,
Suzuki
,
M.
, and
Sano
,
M.
, 2002, “
An Intermediate-Temperature Solid Oxide Fuel Cell Providing Higher Performance With Hydrocarbon Than With Hydrogen
,”
Electrochem. Solid-State Lett.
1099-0062,
5
, pp.
A242
A244
.
13.
Yan
,
J.
,
Matsumoto
,
H.
,
Enoki
,
M.
, and
Ishihara
,
T.
, 2005, “
High-Power SOFC Using La0.9Sr0.1Ga0.8Mg0.2O3-δ/Ce0.8Sm0.2O2-δ Composite Film
,”
Electrochem. Solid-State Lett.
1099-0062,
8
(
8
), pp.
A389
A391
.
14.
Sammes
,
N. M.
, and
Du
,
Y.
, 2007, “
Fabrication and Characterization of Tubular Solid Oxide Fuel Cells
,”
Int. J. Appl. Ceram. Technol.
1546-542X,
4
(
2
), pp.
89
102
.
15.
Sammes
,
N. M.
,
Du
,
Y.
, and
Bove
,
R.
, 2005, “
Design and Fabrication of a 100 W Anode Supported Micro-Tubular SOFC Stack
,”
J. Power Sources
0378-7753,
145
, pp.
428
434
.
16.
Kendall
,
K.
, and
Palin
,
M.
, 1998, “
A Small Solid Oxide Fuel Cell Demonstrator for Microelectronic Applications
,”
J. Power Sources
0378-7753,
71
, pp.
268
270
.
17.
Yashiro
,
K.
,
Yamada
,
N.
,
Kawada
,
T.
,
Hong
,
J.
,
Kaimai
,
A.
,
Nigara
,
Y.
, and
Mizusaki
,
J.
, 2002, “
Demonstration and Stack Concept of Quick Startup/Shutdown SOFC (qSOFC)
,”
Electrochemistry (Tokyo, Jpn.)
1344-3542,
70
(
12
), pp.
958
960
.
18.
Sarkar
,
P.
,
Yamarte
,
L.
,
Rho
,
H.
, and
Johanson
,
L.
, 2007, “
Anode-Supported Tubular Micro-Solid Oxide Fuel Cell
,”
Int. J. Appl. Ceram. Technol.
1546-542X,
4
(
2
), pp.
103
108
.
19.
Funahashi
,
Y.
,
Shimamori
,
T.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2007, “
Optimization of Configuration for Cube-Shaped SOFC Bundles
,”
ECS Trans.
1938-5862,
7
(
1
), pp.
643
649
.
You do not currently have access to this content.