Cathode properties of La0.8Sr0.2Co1xMnxO3 (LSCM) perovskite oxides were investigated for their application to metal-supported solid oxide fuel cells (SOFCs). La0.8Sr0.2Co0.4Mn0.6O3 (LSCM-8246) had the lowest impedance on Zr0.85Y0.15O2 (YSZ) electrolyte among various compositions because the properties of the cathodic reaction kinetics, thermal expansion compatibility, and chemical reactivity were optimized. A Ce0.9Gd0.1O2 (CGO) interlayer was introduced between LSCM and YSZ to inhibit the formation of resistive phases at the interface. The cathode impedance was decreased to about 1/3 of the noninterlayer samples. The study of the partial oxygen pressure dependence and activation energy of LSCM-8246 on CGO-layered YSZ showed that the ionization of the adsorbed oxygen is the rate-determining step of the cathode reaction at the general operation condition of SOFCs. Metal-supported single cell SOFCs with LSCM-8246 cathode were fabricated and characterized. The single cell impedance was much greater than values expected from the half cell test because the cathode in the single cell was sintered in situ during the measurement. The effect of cathode sintering was observed by measuring the current-voltage (I-V) curves and impedance spectra with time.

1.
Ullmann
,
H.
,
Trofimenko
,
N.
,
Tietz
,
F.
,
Stöver
,
D.
, and
Ahmad-Khanlou
,
A.
, 2000, “
Correlation Between Thermal Expansion and Oxide Ion Transport in Mixed Conducting Perovskite-Type Oxides for SOFC Cathodes
,”
Solid State Ionics
0167-2738,
138
(
1–2
), pp.
79
90
.
2.
Teraoka
,
Y.
,
Zhang
,
H. M.
,
Okamoto
,
K.
, and
Yamazoe
,
N.
, 1988, “
Mixed Ionic-Electronic Conductivity of La1−xSrxCo1−yFeyO3−δ Perovskite-Type Oxides
,”
Mater. Res. Bull.
0025-5408,
23
(
1
), pp.
51
58
.
3.
Yamamoto
,
O.
,
Arati
,
Y.
,
Takeda
,
Y.
,
Imanishi
,
N.
,
Mizutani
,
Y.
,
Kawai
,
M.
, and
Nakamura
,
Y.
, 1995, “
Electrical Conductivity of Stabilized Zirconia With Ytterbia and Scandia
,”
Solid State Ionics
0167-2738,
79
, pp.
137
142
.
4.
Larminie
,
J.
, and
Dick
,
A.
, 2003,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
England
, Chap. 3.
5.
Mori
,
M.
, 2004, “
Effect of B-Site Doing on Thermal Cycle Shrinkage for La0.8Sr0.2Mn1−xMxO3+δ Perovskites (M=Mg, Al, Ti, Mn, Fe, Co, Ni; 0≤×≤0.1)
,”
Solid State Ionics
0167-2738,
174
(
1–4
), pp.
1
8
.
6.
Mori
,
M.
,
Hiei
,
Y.
,
Sammes
,
N. M.
, and
Tompsett
,
G. A.
, 2000, “
Thermal-Expansion Behaviors and Mechanisms for Ca- or Sr-Doped Lanthanum Manganite Perovskites Under Oxidizing Atmospheres
,”
J. Electrochem. Soc.
0013-4651,
147
(
4
), pp.
1295
1302
.
7.
Hammouche
,
A.
,
Siebert
,
E.
, and
Hammou
,
A.
, 1989, “
Crystallographic, Thermal and Electrochemical Properties of the System La1−xSrxMnO3 for High Temperature Solid Electrolyte Fuel Cells
,”
Mater. Res. Bull.
0025-5408,
24
(
3
), pp.
367
380
.
8.
Poirson
,
A.
,
Decorse
,
P.
,
Caboche
,
G.
, and
Dufour
,
L. C.
, 1997, “
A Dilatometric Study of the La0.8Sr0.2MnO3 Sintering Behaviour
,”
Solid State Ionics
0167-2738,
99
(
3–4
), pp.
287
295
.
9.
Mai
,
A.
,
Haanappel
,
V. A. C.
,
Uhlenbruck
,
S.
,
Tietz
,
F.
, and
Stöver
,
D.
, 2005, “
Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
176
(
15–16
), pp.
1341
1350
.
10.
Anderson
,
H. U.
, 1992, “
Review of P-Type Doped Perovskite Materials for SOFC and Other Applications
,”
Solid State Ionics
0167-2738,
52
(
1–3
), pp.
33
41
.
11.
Sakaki
,
Y.
,
Takeda
,
Y.
,
Kato
,
A.
,
Imanishi
,
N.
,
Yamamoto
,
O.
,
Hattori
,
M.
,
Iio
,
M.
, and
Esaki
,
Y.
, 1999, “
Ln1−xSrxMnO3 (Ln=Pr, Nd, Sm and Gd) as the Cathode Material for Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
118
(
3–4
), pp.
187
194
.
12.
Mori
,
M.
,
Abe
,
T.
,
Itoh
,
H.
,
Yamamoto
,
O.
,
Shen
,
G. Q.
,
Takeda
,
Y.
, and
Imanishi
,
N.
, 1999, “
Reaction Mechanism Between Lanthanum Manganite and Yttria Doped Cubic Zirconia
,”
Solid State Ionics
0167-2738,
123
(
1–4
), pp.
113
119
.
13.
Tietz
,
F.
, 1999, “
Thermal Expansion of SOFC Materials
,”
Ionics
0947-7047,
5
(
1–2
), pp.
129
139
.
14.
Minh
,
N. Q.
, 1993, “
Ceramic Fuel Cells
,”
J. Am. Ceram. Soc.
0002-7820,
76
(
3
), pp.
563
588
.
15.
Mogensen
,
M.
,
Lindegaard
,
T.
,
Hansen
,
U. R.
, and
Mogensen
,
G.
, 1994, “
Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2
,”
J. Electrochem. Soc.
0013-4651,
141
(
8
), pp.
2122
2128
.
16.
Yamahara
,
K.
,
Sholklapper
,
T. Z.
,
Jacobson
,
C. P.
,
Visco
,
S. J.
, and
De Jonghe
,
L. C.
, 2005, “
Ionic Conductivity of Stabilized Zirconia Networks in Composite SOFC Electrodes
,”
Solid State Ionics
0167-2738,
176
(
15–16
), pp.
1359
1364
.
17.
Ji
,
Y.
,
Kilner
,
J. A.
, and
Carolan
,
M. F.
, 2005, “
Electrical Properties and Oxygen Diffusion in Yttria-Stabilised Zirconia (YSZ)-La0.8Sr0.2MnO3+/−δ (LSM) Composites
,”
Solid State Ionics
0167-2738,
176
(
9–10
), pp.
937
943
.
18.
Barbucci
,
A.
,
Viviani
,
M.
,
Carpanese
,
P.
,
Vladikova
,
D.
, and
Stoynov
,
Z.
, 2006, “
Impedance Analysis of Oxygen Reduction in SOFC Composite Electrodes
,”
Electrochim. Acta
0013-4686,
51
(
8–9
), pp.
1641
1650
.
19.
Barbucci
,
A.
,
Carpanese
,
P.
,
Cerisola
,
G.
, and
Viviani
,
M.
, 2005, “
Electrochemical Investigation of Mixed Ionic/Electronic Cathodes for SOFCs
,”
Solid State Ionics
0167-2738,
176
(
19–22
), pp.
1753
1758
.
20.
Barbucci
,
A.
,
Bozzo
,
R.
,
Cerisola
,
G.
, and
Costamagna
,
P.
, 2002, “
Characterisation of Composite SOFC Cathodes Using Electrochemical Impedance Spectroscopy. Analysis of Pt/YSZ and LSM/YSZ Electrodes
,”
Electrochim. Acta
0013-4686,
47
(
13–14
), pp.
2183
2188
.
21.
Jørgensen
,
M. J.
, and
Mogensen
,
M.
, 2001, “
Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes
,”
J. Electrochem. Soc.
0013-4651,
148
(
5
), pp.
A433
A442
.
22.
Jørgensen
,
M. J.
,
Primdahl
,
S.
, and
Mogensen
,
M.
, 1999, “
Characterisation of Composite SOFC Cathodes Using Electrochemical Impedance Spectroscopy
,”
Electrochim. Acta
0013-4686,
44
(
24
), pp.
4195
4201
.
23.
Perry Murray
,
E.
,
Sever
,
M. J.
, and
Barnett
,
S. A.
, 2002, “
Electrochemical Performance of (La,Sr)(Co,Fe)O3-(Ce,Gd)O3 Composite Cathodes
,”
Solid State Ionics
0167-2738,
148
(
1–2
), pp.
27
34
.
24.
Wang
,
W. G.
, and
Mogensen
,
M.
, 2005, “
High-Performance Lanthanum-Ferrite-Based Cathode for SOFC
,”
Solid State Ionics
0167-2738,
176
(
5–6
), pp.
457
462
.
25.
Shiono
,
M.
,
Kobayashi
,
K.
,
Lan Nguyen
,
T.
,
Hosoda
,
K.
,
Kato
,
T.
,
Ota
,
K.
, and
Dokiya
,
M.
, 2004, “
Effect of CeO2 Interlayer on ZrO2 Electrolyte/La(Sr)CoO3 Cathode for Low-Temperature SOFCs
,”
Solid State Ionics
0167-2738,
170
(
1–2
), pp.
1
7
.
26.
Uchida
,
H.
,
Arisaka
,
S.
, and
Watanabe
,
M.
, 2000, “
High Performance Electrodes for Medium-Temperature Solid Oxide Fuel Cells: Activation of La(Sr)CoO3 Cathode With Highly Dispersed Pt Metal Electrocatalysts
,”
Solid State Ionics
0167-2738,
135
(
1–4
), pp.
347
351
.
27.
Charojrochkul
,
S.
,
Choy
,
K. -L.
, and
Steele
,
B. C. H.
, 1999, “
Cathode/Electrolyte Systems for Solid Oxide Fuel Cells Fabricated Using Flame Assisted Vapour Deposition Technique
,”
Solid State Ionics
0167-2738,
121
(
1–4
), pp.
107
113
.
28.
Tucker
,
M. C.
,
Jacobson
,
C. P.
,
De Jonghe
,
L. C.
, and
Visco
,
S. J.
, 2006, “
A Braze System for Sealing Metal-Supported Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
160
(
2
), pp.
1049
1057
.
29.
Leah
,
R. T.
,
Brandon
,
N. P.
, and
Aguiar
,
P.
, 2005, “
Modelling of Cells, Stacks and Systems Based Around Metal-Supported Planar IT-SOFC Cells With CGO Electrolytes Operating at 500–600°C
,”
J. Power Sources
0378-7753,
145
(
2
), pp.
336
352
.
30.
Carter
,
J. D.
,
Bae
,
J. -M.
,
Cruse
,
T. A.
,
Ralph
,
J. M.
,
Kumar
,
R.
, and
Krumpelt
,
M.
, 2002, “
Solid Oxide Fuel Cell With Enhanced Mechanical and Electrical Properties
,” U.S. Patent No. US-0,167,917.
31.
Lee
,
C.
, and
Bae
,
J.
, 2008, “
Fabrication and Characterization of Metal-Supported Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
176
(
1
), pp.
62
69
.
32.
Lee
,
C.
,
Baek
,
S. W.
, and
Bae
,
J.
, 2008, “
Cathodic Behavior of La0.8Sr0.2Co1−xMnxO3−δ Perovskite Oxide on YSZ Electrolyte for Intermediate Temperature-Operating Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
179
(
27–32
), pp.
1465
1469
.
33.
Kweon
,
H. -J.
,
Kuk
,
S. -T.
,
Park
,
H. -B.
,
Park
,
D. G.
, and
Kim
,
K.
, 1996, “
Synthesis of La0.8Sr0.2CoO3 by Sol-Gel Type Reaction Modified by Poly(Vinyl Alcohol)
,”
J. Mater. Sci. Lett.
0261-8028,
15
(
5
), pp.
428
430
.
34.
Tietz
,
F.
,
Arul Raj
,
I.
, and
Zahid
,
M.
, 2006, “
Electrical Conductivity and Thermal Expansion of La0.8Sr0.2(Mn,Fe,Co)O3−δ Perovskites
,”
Solid State Ionics
0167-2738,
177
(
19–25
), pp.
1753
1756
.
35.
Pai
,
M. R.
,
Wani
,
B. N.
, and
Sreedhar
,
B.
, 2006, “
Catalytic and Redox Properties of Nano-Sized La0.8Sr0.2Co1−xMnxO3 Mixed Oxides Synthesized by Different Routes
,”
J. Mol. Catal. A: Chem.
1381-1169,
246
(
1–2
), pp.
128
135
.
36.
Bae
,
J. -M.
, and
Steele
,
B. C. H.
, 1998, “
Properties of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) Double Layer Cathodes on Gadolinium-Doped Cerium Oxide (CGO) Electrolytes—I. Role of SiO2
,”
Solid State Ionics
0167-2738,
106
(
3–4
), pp.
247
253
.
37.
Yoon
,
S. P.
,
Han
,
J.
,
Nam
,
S. W.
,
Lim
,
T. -H.
,
Oh
,
I. -H.
,
Hong
,
S. -A.
,
Yoo
,
Y. -S.
, and
Lim
,
H. C.
, 2002, “
Performance of Anode-Supported Solid Oxide Fuel Cell With La0.85Sr0.15MnO3 Cathode Modified by Sol-Gel Coating Technique
,”
J. Power Sources
0378-7753,
106
(
1–2
), pp.
160
166
.
38.
Koh
,
J. -H.
,
Yoo
,
Y. -S.
,
Park
,
J. -W.
, and
Lim
,
H. C.
, 2002, “
Carbon Deposition and Cell Performance of Ni-YSZ Anode Support SOFC With Methane Fuel
,”
Solid State Ionics
0167-2738,
149
(
3–4
), pp.
157
166
.
39.
De Souza
,
R. A.
, and
Kilner
,
J. A.
, 1998, “
Oxygen Transport in La1−xSrxMn1−yCoyO3+/−δ Perovskites—Part I. Oxygen Tracer Diffusion
,”
Solid State Ionics
0167-2738,
106
(
3–4
), pp.
175
187
.
40.
De Souza
,
R. A.
, and
Kilner
,
J. A.
, 1999, “
Oxygen Transport in La1−xSrxMn1−yCoyO3+/−δ Perovskites—Part II. Oxygen Surface Exchange
,”
Solid State Ionics
0167-2738,
126
(
1–2
), pp.
153
161
.
41.
Chen
,
X. Y.
,
Yu
,
J. S.
, and
Adler
,
S. B.
, 2005, “
Thermal and Chemical Expansion of Sr-Doped Lanthanum Cobalt Oxide (La1−xSrxCoO3−δ)
,”
Chem. Mater.
0897-4756,
17
(
17
), pp.
4537
4546
.
42.
Lee
,
H. Y.
, and
Oh
,
S. M.
, 1996, “
Origin of Cathodic Degradation and New Phase Formation at the La0.9Sr0.1MnO3/YSZ Interface
,”
Solid State Ionics
0167-2738,
90
(
1–4
), pp.
133
140
.
43.
Adler
,
S. B.
, 2004, “
Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes
,”
Chem. Rev.
,
104
(
10
), pp.
4791
4844
. 0009-2665
44.
Yang
,
Y. L.
,
Jacobson
,
A. J.
,
Chen
,
C. L.
,
Luo
,
G. P.
,
Ross
,
K. D.
, and
Chu
,
C. W.
, 2001, “
Oxygen Exchange Kinetics on A Highly Oriented La0.5Sr0.5CoO3−δ Thin Film Prepared by Pulsed-Laser Deposition
,”
Appl. Phys. Lett.
0003-6951,
79
(
6
), pp.
776
778
.
45.
Jimenez
,
R.
,
Kloidt
,
T.
, and
Kleitz
,
M.
, 1997, “
Reaction-Zone Expansions and Mechanism of the O2, Ag, Yttria-Stabilized Zirconia Electrode Reaction
,”
J. Electrochem. Soc.
0013-4651,
144
(
2
), pp.
582
585
.
46.
Kim
,
J. -D.
,
Kim
,
G. -D.
,
Moon
,
J. -W.
,
Park
,
Y. -I.
,
Lee
,
H. -W.
,
Kobayashi
,
K.
,
Nagai
,
M.
, and
Kim
,
C. -E.
, 2001, “
Characterization of LSM–YSZ Composite Electrode by AC Impedance Spectroscopy
,”
Solid State Ionics
0167-2738,
143
(
3–4
), pp.
379
389
.
47.
van Heuveln
,
F. H.
, and
Bouwmeester
,
H. J. M.
, 1997, “
Electrode Properties of Sr-Doped LaMnOL3 on Yttria-Stabilized Zirconia. II. Electrode Kinetics
,”
J. Electrochem. Soc.
0013-4651,
144
(
1
), pp.
134
140
.
You do not currently have access to this content.