An austenite 349 stainless steel was nitrided via nitrogen plasma. Glancing angle X-ray diffraction patterns suggest that the nitrided layer is amorphous. X-ray photoelectron spectroscopy analysis indicated that the plasma nitridation process produced bulk-type nitrides in the surface layer. In general, the nitrided layer was composed of iron oxide in the outer layer and chromium oxide in the inner layers. Contaminations of vanadium and tin were detected in the as-grown nitrided layer; these dissolved away after polarization. The influence of these contaminants on the corrosion resistance of the nitrided layer in polymer electrolyte membrane fuel cell (PEMFC) environments is not considered significant. The nitrided sample had a much higher contact resistance than the bare one and the contact resistance increased with the nitriding time. The high interfacial contact resistance values can be related to the thicker oxide film after plasma nitridation. The corrosion resistances obtained for the 1 h nitrided and bare stainless steels in simulated PEMFC environments were similar. The outmost nitrided layer dissolved after polarization in the PEMFC environments leaving a passive film (modified with nitrides), similar to that of bare stainless steel under the same conditions. The passive film thickness was 3.7 nm for nitrided steel in PEMFC cathode environment and 4.2 nm for nitrided steel in PEMFC anode environment.

1.
Steele
,
B. C. H.
, and
Heinzel
,
A.
, 2001, “
Materials for Fuel-Cell Technologies
,”
Nature (London)
0028-0836,
414
, pp.
345
352
.
2.
Hornung
,
R.
, and
Kappelt
,
G.
, 1998, “
Bipolar Plate Materials Development Using Fe-Based Alloys for Solid Polymer Fuel Cells
,”
J. Power Sources
0378-7753,
72
, pp.
20
21
.
3.
Borup
,
R. L.
, and
Vanderborgh
,
N. E.
, 1995, “
Design and Testing Criteria for Bipolar Plate Materials for PEM Fuel Cell Applications
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
393
, pp.
151
155
.
4.
Scholta
,
J.
,
Rohland
,
B.
, and
Garche
,
J.
, 1997, “
Surface Conductivity and Stability of Bipolar Plate Materials for Polymer Membrane Fuel Cells in Contact With Nafion
,”
Proceedings of the Second International Symposium on New Materials for Fuel Cell and Modern Battery Systems
,
P. R.
Roberge
, ed.,
Ecole Polytechnique de Montreal
, pp.
300
304
.
5.
Makkus
,
R. C.
,
Janssen
,
A. H. H.
,
de Bruijn
,
F. A.
, and
Mallant
,
R. K. A. M.
, 2000, “
Use of Stainless Steel for Cost Competitive Bipolar Plates in the SPFC
,”
J. Power Sources
0378-7753,
86
, pp.
274
282
.
6.
Hentall
,
P. L.
,
Lakeman
,
J. B.
,
Mepsted
,
G. O.
,
Adcock
,
P. L.
, and
Moore
,
J. M.
, 1999, “
New Materials for Polymer Electrolyte Membrane Fuel Cell Current Collectors
,”
J. Power Sources
0378-7753,
80
, pp.
235
241
.
7.
Davies
,
D. P.
,
Adcock
,
P. L.
,
Turpin
,
M.
, and
Rowen
,
S. J.
, 2000, “
Stainless Steel as a Bipolar Plate Material for Solid Polymer Fuel Cells
,”
J. Power Sources
0378-7753,
86
, pp.
237
242
.
8.
Wind
,
J.
,
Späh
,
R.
,
Kaiser
,
W.
, and
Böhm
,
G.
, 2002, “
Metallic Bipolar Plates for PEM Fuel Cells
,”
J. Power Sources
0378-7753,
105
, pp.
256
260
.
9.
Kumar
,
A.
, and
Reddy
,
R. G.
, 2004, “
Materials and Design Development for Bipolar/end Plates in Fuel Cells
,”
J. Power Sources
0378-7753,
129
, pp.
62
67
.
10.
Wang
,
H.
,
Sweikart
,
M. A.
, and
Turner
,
J. A.
, 2003, “
Stainless Steel as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
115
, pp.
243
251
.
11.
Lee
,
S. -J.
,
Lai
,
J. -J.
, and
Huang
,
C. -H.
, 2005, “
Stainless Steel Bipolar Plates
,”
J. Power Sources
0378-7753,
145
, pp.
362
368
.
12.
Hermann
,
A.
,
Chaudhuri
,
T.
, and
Spagnol
,
P.
, 2005, “
Bipolar Plates for PEM Fuel Cells: A Review
,”
Int. J. Hydrogen Energy
0360-3199,
30
, pp.
1297
1302
.
13.
Silva
,
R. F.
,
Franchi
,
D.
,
Leone
,
A.
,
Pilloni
,
L.
,
Masci
,
A.
, and
Pozio
,
A.
, 2006, “
Surface Conductivity and Stability of Metallic Bipolar Plate Materials for Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
51
, pp.
3592
3598
.
14.
Tawfik
,
H.
,
Hung
,
Y.
, and
Mahajan
,
D.
, 2007, “
Metal Bipolar Plates for PEM Fuel Cell-A Review
,”
J. Power Sources
0378-7753,
163
, pp.
755
767
.
15.
Brett
,
D. J. L.
, and
Brandon
,
N. P.
, 2007, “
Review of Materials and Characterization Methods for Polymer Electrolyte Fuel Cell Flow-Field Plates
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
4
, pp.
29
44
.
16.
Fontana
,
M. G.
, and
Greene
,
N. D.
, 1978,
Corrosion Engineering
,
2nd ed.
,
McGraw-Hill
,
New York
, pp.
163
166
.
17.
Uhlig
,
H. H.
, and
Revie
,
R. W.
, 1985,
Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering
,
3rd ed.
,
Wiley
,
New York
, pp.
78
81
.
18.
Wang
,
H.
,
Brady
,
M. P.
,
More
,
K. L.
,
Meyer
,
H. M.
, III
, and
Turner
,
J. A.
, 2004, “
Thermally Nitrided Stainless Steels for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates: Part 2: Beneficial Modification of Passive Layer on AISI446
,”
J. Power Sources
0378-7753,
138
, pp.
79
85
.
19.
Wang
,
H.
, and
Turner
,
J. A.
, 2004, “
Ferritic Stainless Steels as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
128
, pp.
193
200
.
20.
Wang
,
H.
,
Brady
,
M. P.
,
Teeter
,
G.
, and
Turner
,
J. A.
, 2004, “
Thermally Nitrided Stainless Steels for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates: Part 1: Model Ni-50Cr and Austenitic 349TM Alloys
,”
J. Power Sources
0378-7753,
138
, pp.
86
93
.
21.
Wang
,
L.
, 2003, “
Surface Modification of AISI 304 Austenitic Stainless Steel by Plasma Nitriding
,”
Appl. Surf. Sci.
0169-4332,
211
(
1-4
), pp.
308
314
.
22.
Menthe
,
E.
, and
Rie
,
K. -T.
, 1999, “
Further Investigation of the Structure and Properties of Austenitic Stainless Steel After Plasma Nitriding
,”
Surf. Coat. Technol.
0257-8972,
116–119
, pp.
199
204
.
23.
Fewell
,
M. P.
,
Priest
,
J. M.
,
Baldwin
,
M. J.
,
Collins
,
G. A.
, and
Short
,
K. T.
, 2000, “
Nitriding at Low Temperature
,”
Surf. Coat. Technol.
0257-8972,
131
, pp.
284
290
.
24.
Lei
,
M. K.
, and
Zhu
,
X. M.
, 2001, “
In vitro Corrosion Resistance of Plasma Source Ion Nitrided Austenitic Stainless Steels
,”
Biomaterials
0142-9612,
22
, pp.
641
647
.
25.
Flis
,
J.
,
Mankowski
,
J.
,
Zakroczymski
,
T.
,
Bell
,
T.
,
Janosi
,
S.
,
Kolozsvary
,
Z.
, and
Narowska
,
B.
, 1999, “
Surface Films on Plasma Nitrided Stainless Steel Subjected to Passivation Treatments
,”
Corros. Sci.
0010-938X,
41
, pp.
1257
1272
.
26.
Lim
,
Y. S.
,
Kim
,
J. S.
,
Ahn
,
S. J.
,
Kwon
,
H. S.
, and
Katada
,
Y.
, 2001, “
The Influences of Microstructure and Nitrogen Alloying on Pitting Corrosion of Type 316L and 20 wt.% Mn-Substituted Type 316L Stainless Steels
,”
Corros. Sci.
0010-938X,
43
, pp.
53
68
.
27.
Tian
,
R. J.
,
Sun
,
J. C.
, and
Wang
,
L.
, 2007, “
Effect of Plasma Nitriding on Behavior of Austenitic Stainless Steel 304L Bipolar Plate in Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
163
, pp.
719
724
.
28.
Tian
,
R.
,
Sun
,
J.
, and
Wang
,
L.
, 2006, “
Plasma-Nitrided Austenitic Stainless Steel 316L as Bipolar Plate for PEMFC
,”
Int. J. Hydrogen Energy
0360-3199,
31
, pp.
1874
1878
.
29.
Liu
,
P.
,
Zhang
,
J. -G.
, and
Turner
,
J. A.
,
Tracy
,
C. E.
,
Benson
,
D. K.
, and
Bhattacharya
,
R. N.
, 1998, “
Fabrication of LiV2O5 Thin-Film Electrodes for Rechargeable Lithium Batteries
,”
Solid State Ionics
0167-2738,
111
, pp.
145
151
.
30.
Chu
,
D.
, and
Jiang
,
R.
, 1999, “
Comparative Studies of Polymer Electrolyte Membrane Fuel Cell Stack and Single Cell
,”
J. Power Sources
0378-7753,
80
, pp.
226
234
.
31.
Blawert
,
C.
,
Weisheit
,
A.
,
Mordike
,
B. L.
, and
Knoop
,
F. M.
, 1996, “
Plasma Immersion Ion Implantation of Stainless Steel: Austenitic Stainless Steel in Comparison to Austenitic-Ferritic Stainless Steel
,”
Surf. Coat. Technol.
0257-8972,
85
, pp.
15
27
.
32.
Jeong
,
B. -Y.
, and
Kim
,
M. -H.
, 2001, “
Effects of Pulse Frequency and Temperature on the Nitride Layer and Surface Characteristics of Plasma Nitrided Stainless Steel
,”
Surf. Coat. Technol.
0257-8972,
137
, pp.
249
254
.
33.
Menthe
,
E.
,
Bulak
,
A.
,
Olfe
,
J.
,
Zimmermann
,
A.
, and
Rie
,
K. -T.
, 2000, “
Improvement of the Mechanical Properties of Austenitic Stainless Steel After Plasma Nitriding
,”
Surf. Coat. Technol.
0257-8972,
133–134
, pp.
259
263
.
34.
Burstein
,
G. T.
,
Hutchings
,
I. M.
, and
Sasaki
,
K.
, 2000, “
Electrochemically Induced Annealing of Stainless-Steel Surfaces
,”
Nature (London)
0028-0836,
407
, pp.
885
887
.
35.
Lei
,
M. K.
, and
Zhu
,
X. M.
, 2005, “
Role of Nitrogen in Pitting Corrosion Resistance of a High-Nitrogen Face-Centered-Cubic Phase Formed on Austenitic Stainless Steel
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
B291
B295
.
36.
Willenbruch
,
R. D.
,
Clayton
,
C. R.
,
Oversluizen
,
M.
,
Kim
,
D.
, and
Lu
,
Y. C.
, 1990, “
An XPS and Electrochemical Study of the Influence of Molybdenum and Nitrogen on the Passivity of Austenitic Stainless Steel
,”
Corros. Sci.
0010-938X,
31
, pp.
179
190
.
37.
Olefjord
,
I.
, and
Wegrelius
,
L.
, 1996, “
The Influence of Nitrogen on the Passivation of Stainless Steels
,”
Corros. Sci.
0010-938X,
38
, pp.
1203
1220
.
38.
Marcus
,
P.
, and
Bussell
,
M. E.
, 1992, “
XPS Study of the Passive Films Formed on Nitrogen-Implanted Austenitic Stainless Steels
,”
Appl. Surf. Sci.
0169-4332,
59
, pp.
7
21
.
39.
Kim
,
D.
,
Clayton
,
C. R.
, and
Oversluizen
,
M.
, 1994, “
On the Question of Nitrate Formation by N-Containing Austenitic Stainless Steels
,”
Mater. Sci. Eng., A
0921-5093,
186
, pp.
163
169
.
40.
Liang
,
W.
,
Xiaolei
,
X.
,
Jiujun
,
X.
, and
Yaqin
,
S.
, 2001, “
Characteristics of Low Pressure Plasma Arc Source Ion Nitrided Layer on Austenitic Stainless Steel at Low Temperature
,”
Thin Solid Films
0040-6090,
391
, pp.
11
16
.
41.
Riviere
,
J. P.
,
Cahoreau
,
M.
, and
Meheust
,
P.
, 2002, “
Chemical Bonding of Nitrogen in Low Energy High Flux Implanted Austenitic Stainless Steel
,”
J. Appl. Phys.
0021-8979,
91
, pp.
6361
6366
.
42.
Stefanov
,
P.
,
Stoychev
,
D.
,
Stoycheva
,
M.
,
Gonzalez-Elipe
,
A. R.
, and
Marinova
,
Ts.
, 1999, “
XPS, SEM and TEM Characterization of Stainless-Steel 316L Surfaces After Electrochemical Etching and Oxidizing
,”
Surf. Interface Anal.
0142-2421,
28
, pp.
106
110
.
43.
Bera
,
S.
,
Rangarajan
,
S.
, and
Narasimhan
,
S. V.
, 2000, “
Electrochemical Passivation of Iron Alloys and the Film Characterization by XPS
,”
Corros. Sci.
0010-938X,
42
, pp.
1709
1724
.
44.
Wang
,
H.
, and
Turner
,
J. A.
, 2006, “
On the Passivation of 349 TM Stainless Steel in Simulated PEMFC Cathode Environment
,”
ECS Trans.
1938-5862,
1
(
6
), pp.
263
272
.
45.
Yang
,
M. Z.
,
Luo
,
J. L.
,
Yang
,
Q.
,
Qiao
,
L. J.
,
Qin
,
Z. Q.
, and
Norton
,
P. R.
, 1999, “
Effects of Hydrogen on Semiconductivity of Passive Films and Corrosion Behavior of 310 Stainless Steel
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
2107
2112
.
46.
Huang
,
C. C.
,
Tsai
,
W. T.
, and
Lee
,
J. T.
, 1995, “
Electrochemical and Surface Studies on the Passivity of Nitrogen and Molybdenum Containing Laser Cladded Alloys in 3.5 wt% NaCl Solution
,”
Corros. Sci.
0010-938X,
37
, pp.
769
780
.
47.
Chyou
,
S. D.
, and
Shih
,
H. C.
, 1991, “
X-ray Photoelectron Spectroscopy and Auger Electron Spectroscopy Studies on the Passivation Behavior of Plasma-Nitrided Low Alloy Steel in Nitric Acid
,”
Mater. Sci. Eng., A
0921-5093,
148
, pp.
241
251
.
You do not currently have access to this content.