Air-breathing polymer electrolyte membrane fuel cells (ABFCs) use free convection airflow to supply oxygen to their cathodes. These cells are typically characterized by low output power densities compared with forced-convection fuel cells. Because ABFC designs rely on natural convection air delivery, cathode performance is often the performance bottleneck. This paper specifically examines the tradeoff between mass transport losses and ohmic electrical resistance losses for an optimal ABFC cathode design. Optimization is nontrivial because the simultaneous requirements for excellent cell compression, current collection, and gas access are often in contradiction. Simple scaling analysis and experimental observations suggest that the tradeoff between lateral mass transport resistance losses and cathode/gas diffusion layer (GDL) contact resistance losses determines the optimal ABFC cathode design. In order to quantitatively study these effects, we have tested a series of different cathode geometries in a standardized ABFC. Using high frequency resistance measurements and fast-scan polarization measurements, we have been able to interrogate both the ohmic and mass transport losses associated with each cathode configuration. We have also used pressure sensitive foils to examine the pressure distribution for representative configurations, providing a quantitative link between pressure distribution and cell resistance. Finally, we have studied the effect of deploying a current collecting contact layer between the cathode and the GDL. Results indicate that the deployment of a sufficiently stiff yet highly porous contact layer significantly reduces contact resistance losses while imposing minimal additional mass transport losses. A stiff yet porous contact layer reduces the contact resistance losses by increasing the total contact surface area and providing a more even distribution of pressure across the face of the cell. By minimizing contact resistance losses, this strategy enables the deployment of ABFC cathode structures with greater than 90% open area, thereby leading to an enhanced ABFC performance, particularly at high current densities.

1.
Dyer
,
C. K.
, 2002, “
Fuel Cells for Portable Applications
,”
J. Power Sources
0378-7753,
106
, pp.
31
34
.
2.
Broussely
,
M.
, and
Archdale
,
G.
, 2004, “
Li-Ion Batteries and Portable Power Source Prospects for the Next 5–10 Years
,”
J. Power Sources
0378-7753,
136
(
2
), pp.
386
394
.
3.
Wainright
,
J. S.
,
Savinell
,
R. F.
,
Liu
,
C. C.
, and
Litt
,
M.
, 2003, “
Microfabricated Fuel Cells
,”
Electrochim. Acta
0013-4686,
48
, pp.
2869
2877
.
4.
Schmitz
,
A.
,
Wagner
,
S.
,
Hahn
,
R.
,
Uzun
,
H.
, and
Hebling
,
C.
, 2004, “
Stability of Planar PEMFC in Printed Circuit Board Technology
,”
J. Power Sources
0378-7753,
127
, pp.
197
205
.
5.
Hottinen
,
T.
,
Mikkola
,
M.
, and
Lund
,
P.
, 2004, “
Evaluation of Planar Free-Breathing Polymer Electrolyte Membrane Fuel Cell Design
,”
J. Power Sources
0378-7753,
129
, pp.
68
72
.
6.
O’Hayre
,
R.
,
Fabian
,
T.
,
Litster
,
S.
,
Prinz
,
F. B.
, and
Santiago
,
J. G.
, 2007, “
Engineering Model of a Passive Planar Air Breathing Fuel Cell Cathode
,”
J. Power Sources
0378-7753,
167
(
1
), pp.
118
129
.
7.
Fabian
,
T.
,
O’Hayre
,
R.
,
Prinz
,
F. B.
, and
Santiago
,
J. G.
, 2007, “
Measurement of Temperature and Reaction Species in the Cathode Diffusion Layer of a Free-Convection Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B910
B918
.
8.
Jeong
,
S. U.
,
Cho
,
E. A.
,
Kim
,
H. -J.
,
Lim
,
T. -H.
,
Oh
,
I. -H.
, and
Kim
,
S. H.
, 2006, “
Effects of Cathode Open Area and Relative Humidity on the Performance of Air-Breathing Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
158
, pp.
348
353
.
9.
Schmitz
,
A.
,
Tranitz
,
M.
,
Wagner
,
S.
,
Hahn
,
R.
, and
Hebling
,
C.
, 2003, “
Planar Self-Breathing Fuel Cells
,”
J. Power Sources
0378-7753,
118
, pp.
162
171
.
10.
Schmitz
,
A.
,
Tranitz
,
M.
,
Eccarius
,
S.
,
Weil
,
A.
, and
Hebling
,
C.
, 2006, “
Influence of Cathode Opening Size and Wetting Properties of Diffusion Layers on the Performance of Air-Breathing PEMFCs
,”
J. Power Sources
0378-7753,
154
, pp.
437
447
.
11.
Hottinen
,
T.
,
Himanen
,
O.
, and
Lund
,
P.
, 2004, “
Effect of cathode structure on planar free-breathing PEMFC
,”
J. Power Sources
0378-7753,
138
, pp.
205
210
.
12.
Tabe
,
Y.
,
Park
,
S. -K.
,
Kikuta
,
K.
,
Chikahisa
,
T.
, and
Hishinuma
,
Y.
, 2006, “
Effect of Cathode Separator Structure on Performance Characteristics of Free-Breathing PEMFCs
,”
J. Power Sources
0378-7753,
162
, pp.
58
65
.
13.
Ziegler
,
C.
,
Schmitz
,
A.
,
Tranitz
,
M.
,
Fontes
,
E.
, and
Schumacher
,
J. O.
, 2004, “
Modeling Planar and Self-Breathing Fuel Cells for Use in Electronic Devices
,”
J. Electrochem. Soc.
0013-4651,
151
(
12
), pp.
A2028
A2041
.
14.
Wang
,
Y.
, and
Ouyang
,
M.
, 2007, “
Three-Dimensional Heat and Mass Transfer Analysis in an Air-Breathing Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
164
(
2
), pp.
721
729
.
15.
Litster
,
S.
,
Pharoah
,
J. G.
,
McLean
,
G.
, and
Djilali
,
N.
, 2006, “
Computational Analysis of Heat and Mass Transfer in a Micro-Structured PEMFC Cathode
,”
J. Power Sources
0378-7753,
156
(
2
), pp.
334
344
.
16.
Ying
,
W.
,
Ke
,
J.
,
Lee
,
W. Y.
,
Yang
,
T. H.
, and
Kim
,
C. S.
, 2005, “
Effects of Cathode Channel Configurations on the Performance of an Air-Breathing PEMFC
,”
Int. J. Hydrogen Energy
0360-3199,
30
(
12
), pp.
1351
1361
.
17.
Schmitz
,
A.
,
Ziegler
,
C.
,
Schumacher
,
J. O.
,
Tranitz
,
M.
,
Fontes
,
E.
, and
Hebling
,
C.
, 2004, “
Modeling Approach for Planar Self-Breathing PEMFC and Comparison With Experimental Results
,”
Fuel Cells
0532-7822,
4
(
4
), pp.
358
364
.
18.
Berning
,
T.
, and
Djilali
,
N.
, 2003, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell—A Parametric Study
,”
J. Power Sources
0378-7753,
124
, pp.
440
452
.
19.
Meng
,
H.
, and
Wang
,
C. Y.
, 2004, “
Electron Transport in PEFCs
,”
J. Electrochem. Soc.
0013-4651,
151
(
3
), pp.
A358
A367
.
20.
Birgersson
,
E.
, and
Vynnycky
,
M.
, 2006, “
A Quantitative Stuffy of the Effect Of Flow-Distributor Geometry in the Cathode of a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
153
(
1
), pp.
76
88
.
21.
Freunberger
,
S. A.
,
Reuma
,
M.
,
Wokauna
,
A.
, and
Büchi
,
F. N.
, 2006, “
Expanding Current Distribution in PEFCs to Sub-Millimeter Resolution
,”
Electrochem. Commun.
1388-2481,
8
(
9
), pp.
1435
1438
.
22.
Hottinen
,
T.
,
Himanen
,
O.
,
Karvonen
,
S.
, and
Nitta
,
I.
, 2007, “
Inhomogeneous Compression of PEMFC Gas Diffusion Layer—Part II: Modeling the Effect
,”
J. Power Sources
0378-7753,
171
, pp.
113
121
.
23.
Ahmed
,
D. H.
,
Sung
,
H. J.
, and
Bae
,
J.
, 2008, “
Effect of GDL Permeability on Water and Thermal Management in PEMFCs—II: Clamping Force
,”
Int. J. Hydrogen Energy
0360-3199,
33
, pp.
3786
3800
.
24.
O’Hayre
,
R.
,
Cha
,
S. W.
,
Colella
,
W.
, and
Prinz
,
F. B.
, 2006,
Fuel Cell Fundamentals
,
Wiley
,
New York
.
25.
Ihonen
,
J.
,
Mikkola
,
M.
, and
Lindbergh
,
G.
, 2004, “
Flooding of Gas Diffusion Backing in PEFCs: Physical and Electrochemical Characterization
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A1152
A1161
.
26.
Mathias
,
M.
,
Roth
,
J.
,
Fleming
,
J.
, and
Lehnert
,
W.
, 2003,
Handbook of Fuel Cells-Fundamentals, Technology and Applications
,
W.
Vielstich
,
H.
Hasteiger
, and
A.
Lamm
, eds.,
Wiley
,
New York
, Vol.
3
, Chap. 46.
27.
O’Hayre
,
R.
,
Braithwaite
,
D.
,
Herman
,
W.
,
Lee
,
S. J.
,
Fabian
,
T.
,
Cha
,
S. W.
,
Saito
,
Y.
, and
Prinz
,
F. B.
, 2003, “
Development of Portable Fuel Cell Arrays With Printed-Circuit Technology
,”
J. Power Sources
0378-7753,
124
, pp.
459
472
.
28.
Fabian
,
T.
,
Posner
,
J. D.
,
O’Hayre
,
R.
,
Cha
,
S. W.
,
Eaton
,
J. K.
,
Prinz
,
F. B.
, and
Santiago
,
J. G.
, 2006, “
The Role of Ambient Conditions on the Performance of a Planar, Air Breathing Hydrogen PEM Fuel Cell
,”
J. Power Sources
0378-7753,
161
, pp.
168
182
.
29.
Ge
,
J.
,
Higier
,
A.
, and
Liu
,
H.
, 2006, “
Effect of gas diffusion layer compression on PEM fuel cell performance
,”
J. Power Sources
0378-7753,
159
, pp.
922
927
.
30.
Ihonen
,
J.
,
Jaouen
,
F.
,
Lindbergh
,
G.
, and
Sundholm
,
G.
, 2001, “
A Novel Polymer Electrolyte Fuel Cell for Laboratory Investigations and In-Situ Contact Resistance Measurements
,”
Electrochim. Acta
0013-4686,
46
(
19
), pp.
2899
2911
.
31.
Møller-Holst
,
S.
, 1996, “
Solid Polymer Fuel Cells, Electrode and Membrane Performance Studies
,” Ph.D. thesis, NTNU, Trondheim, Norway, pp.
34
40
.
32.
Agilent Technologies
, 2000, Agilent Zero Volt Electronic Load Product Note.
You do not currently have access to this content.