The effects of water transport through membrane electrolyte assembly of a polymer exchange membrane fuel cell on cell performance has been studied by a one-dimensional, nonisothermal, steady-state model. Three forms of water are considered in the model: dissolved water in the electrolyte or membrane, and liquid water and water vapor in the void space. Phase changes among these three forms of water are included based on the corresponding local equilibriums between the two involved forms. Water transport and its effect on cell performance have been discussed under different operating conditions by using the value and the sign of the net water transport coefficient, which is defined by the net flux of water transported from the anode side to the cathode side per proton flux. Optimal cell performance can be obtained by adjusting the liquid water saturation at the interface of the cathode gas diffusion layer and flow channels.

1.
Weber
,
A. Z.
, and
Newman
,
J.
, 2004, “
Modeling Transport in Polymer-Electrolyte Fuel Cells
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
, pp.
4679
4726
.
2.
Wang
,
C. Y.
, 2004, “
Fundamental Models for Fuel Cell Engineering
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
, pp.
4727
4766
.
3.
Yao
,
K. Z.
,
Karan
,
K.
,
McAuley
,
K. B.
,
Oosthuizen
,
P.
,
Peppley
,
B.
, and
Xie
,
T.
, 2004, “
A Review of Mathematical Models for Hydrogen and Direct Methanol Polymer Electrolyte Membrane Fuel Cells
,”
Fuel Cells
0532-7822,
4
, pp.
3
29
.
4.
Song
,
D.
,
Wang
,
Q.
,
Liu
,
Z.
,
Navessin
,
T.
,
Eikerling
,
M.
, and
Holdcroft
,
S.
, 2004, “
Numerical Optimization Study of the Catalyst Layer of PEM Fuel Cell Cathode
,”
J. Power Sources
0378-7753,
126
, pp.
104
111
.
5.
Song
,
D.
,
Wang
,
Q.
,
Liu
,
Z.
,
Eikerling
,
M.
,
Xie
,
Z.
,
Navessin
,
T.
, and
Holdcroft
,
S.
, 2005, “
A Method for Optimizing Distributions of Nafion and Pt in Cathode Catalyst Layers of PEM Fuel Cells
,”
Electrochim. Acta
0013-4686,
50
, pp.
3347
3358
.
6.
Eikerling
,
M.
, 2006, “
Water Management in Cathode Catalyst Layers of PEM Fuel Cells: A Structure-Based Model
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
E58
E70
.
7.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
A2334
A2341
.
8.
Eikerling
,
M.
, and
Kornyshev
,
A. A.
, 1998, “
Modelling the Performance of the Cathode Catalyst Layer of Polymer Electrolyte Fuel Cells
,”
J. Electroanal. Chem.
0022-0728,
453
, pp.
89
106
.
9.
Marr
,
C.
, and
Li
,
X.
, 1999, “
Composition and Performance Modeling of Catalyst Layer in a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
77
, pp.
17
21
.
10.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
, 2000, “
Three-Dimensional Numerical Simultion of Straight Channel PEM Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
30
, pp.
135
146
.
11.
Wang
,
Q.
,
Eikerling
,
M.
,
Song
,
D.
,
Liu
,
Z.
,
Navessin
,
T.
,
Xie
,
Z.
, and
Holdcroft
,
S.
, 2004, “
Functionally Graded Cathode Catalyst Layers for Polymer Electrolyte Fuel Cells-Part I: Theoretical Modeling
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A950
A957
.
12.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, “
A Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
, pp.
1161
1163
.
13.
Janssen
,
G. J. M.
, 2001, “
A Phenomenological Model of Water Transport in a Proton Exchange Membrane Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
148
, pp.
A1313
A1323
.
14.
He
,
W.
,
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 2000, “
Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields
,”
AIChE J.
0001-1541,
46
, pp.
2053
2064
.
15.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
94
, pp.
40
50
.
16.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2004, “
Two-Phase Transport and the Role of Micro-Porous Layer in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
49
, pp.
4359
4369
.
17.
Siegel
,
N. P.
,
Ellis
,
M. W.
,
Nelson
,
D. J.
, and
von Spakovsky
,
M. R.
, 2004, “
A Two-Dimensional Computational Model of a PEMFC With Liquid Water Transport
,”
J. Power Sources
0378-7753,
128
, pp.
173
184
.
18.
Mazumder
,
S.
, and
Cole
,
J. V.
, 2003, “
Rigorous 3D Mathematical Modelling of PEM Fuel Cells: II. Model Predictions With Liquid Water Transport
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A1510
A1517
.
19.
Weber
,
A. Z.
,
Darling
,
R. M.
, and
Newman
,
J.
, 2004, “
Modeling Two-Phase Behavior in PEFCs
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A1715
A1727
.
20.
You
,
L.
, and
Liu
,
H.
, 2006, “
A Two-Phase Flow and Transport Model for PEM Fuel Cells
,”
J. Power Sources
0378-7753,
155
, pp.
219
230
.
21.
Berning
,
T.
, and
Djilali
,
N.
, 2003, “
A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A1589
A1598
.
22.
Baschuk
,
J. J.
, and
Li
,
X.
, 2000, “
Modeling of Polymer Electrolyte Membrane Fuel Cells With Variable Degrees of Water Flooding
,”
J. Power Sources
0378-7753,
86
, pp.
181
196
.
23.
Shah
,
A. A.
,
Kim
,
G. -S.
,
Gervais
,
W.
,
Young
,
A.
,
Promislow
,
K.
,
Li
,
J.
, and
Ye
,
S.
, 2006, “
The Effects of Water and Microstructure on the Performance of Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
160
, pp.
1251
1268
.
24.
Berg
,
P.
,
Promislow
,
K.
,
St-Pierre
,
J.
,
Stumper
,
J.
, and
Wetton
,
B.
, 2004, “
Water Management in PEM Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A341
A353
.
25.
Noponen
,
M.
,
Birgersson
,
E.
,
Ihonen
,
J.
,
Vynnycky
,
M.
,
Lundblad
,
A.
, and
Lindbergh
,
G.
, 2004, “
A Two-Phase Non-Isothermal PEFC Model: Theory and Validation
,”
Fuel Cells
0532-7822,
4
, pp.
365
377
.
26.
Song
,
D.
,
Wang
,
Q.
,
Liu
,
Z. -S.
, and
Huang
,
C.
, 2006, “
Transient Analysis for the Cathode Gas Diffusion Layer of PEM Fuel Cells
,”
J. Power Sources
0378-7753,
159
, pp.
928
942
.
27.
Birgersson
,
E.
,
Noponen
,
M.
, and
Vynnycky
,
M.
, 2005, “
Analysis of a Two-Phase Non-Isothermal Model for a PEFC
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
A1021
A1034
.
28.
Wang
,
Y.
, and
Wang
,
C. Y.
, 2006, “
A Nonisothermal, Two-Phase Model for Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
A1193
A1200
.
29.
Steinkamp
,
K.
,
Schumacher
,
J. O.
,
Goldsmith
,
F.
,
Ohlberger
,
M.
, and
Ziegler
,
C.
, 2008, “
A Nonisothermal PEM Fuel Cell Model Including Two Water Transport Mechanisms in the Membrane
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
5
, p.
011007
.
30.
Abriola
,
L. M.
, and
Pinder
,
G. F.
, 1985, “
A Multiphase Approach to the Modeling of Porous Media Contamination by Organic Compounds 1. Equation Development
,”
Water Resour. Res.
0043-1397,
21
, pp.
11
18
.
31.
Berger
,
C.
, 1968,
Handbook of Fuel Cell Technology
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
32.
Crank
,
J.
, 1975,
The Mathematics of Diffusion
,
2nd ed.
,
Oxford Science
,
Oxford
, pp.
88
.
33.
Hinatsu
,
J. T.
,
Mizuhata
,
M.
, and
Takenaka
,
H.
, 1994, “
Water Uptake of Perfluorosulfonic Acid Membranes From Liquid Water and Water Vapour
,”
J. Electrochem. Soc.
0013-4651,
141
, pp.
A1493
A1497
.
34.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 2002,
Transport Phenomena
,
2nd ed.
,
Wiley
,
New York
.
35.
Ogumi
,
Z.
,
Takehara
,
Z.
, and
Yoshizawa
,
S.
, 1984, “
Gas Permeation in SPE Method I. Oxygen Permeation Through Nafion and Neosepta
,”
J. Electrochem. Soc.
0013-4651,
131
, pp.
A769
A772
.
36.
Motupally
,
S.
,
Becker
,
A. J.
, and
Weidner
,
J. W.
, 2000, “
Diffusion of Water in Nafion Membranes
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
A3171
A3177
.
37.
Marsh
,
K. N.
, 1987,
Recommended Reference Materials for the Realization of Physicochemical Properties
,
Blackwell Scientific
,
Oxford
.
38.
Morrow
,
N. R.
, 1970, “
Irreducible Wetting-Phase Saturations in Porous Media
,”
Chem. Eng. Sci.
0009-2509,
25
, pp.
1799
1815
.
39.
Khandelwal
,
M.
, and
Mench
,
M. M.
, 2006, “
Direct Measurement of Through-Plane Thermal Conductivity and Contact Resistance in Fuel Cell Materials
,”
J. Power Sources
0378-7753,
161
, pp.
1106
1115
.
You do not currently have access to this content.