The purpose of this paper is to present the results of a feasibility study of the supply of electricity and heat to a large user (i.e., a public hospital in Northern Italy) by means of a molten carbonate fuel cell (MCFC) hybrid system in comparison with other technologies. The study investigated three alternative options in order to meet the user’s demand: internal combustion engine, gas turbine, and a hybrid system (molten carbonate fuel cells and gas turbine, MCFC-HS), which is currently under development by Ansaldo Fuel Cell Ltd. and ENEA. The user requirement was the yearly supplies of 6.65GWhe/year and 21.64GWhth/year. Due to demand fluctuations over the year, integration by electric grid and/or additional thermal boilers was also required and investigated. The approach integrates the usual mass balance with large scale material flow accounting, embodied energy analysis, exergy efficiency, and emergy synthesis, within a LCA perspective. Results show that the best performance from the point of view of energy and exergy efficiency is shown by the MCFC-hybrid system. The latter is also characterized by the lowest embodied energy demand and cumulative material demand as well as by the lowest requirement for direct and indirect environmental support (emergy method). However, the small thermal energy supply of the MCFC-HS compared with the large thermal needs of the hospital calls for a larger use of the additional boiler. The latter device worsens the local-scale emissions of the system, compared with the other alternatives investigated. Results point out that a proper choice cannot only be based on the individual performance of an even well performing technological device, but also needs to be tailored on the system’s characteristics and dynamics, in order to adequately match supply and demand.

1.
Bargigli
,
S.
,
Raugei
,
M.
, and
Ulgiati
,
S.
, 2004, “
Comparison of Thermodynamic and Environmental Indexes of Natural Gas, Syngas and Hydrogen Production Processes
,”
Energy
0360-5442,
29
, pp.
2145
2159
.
2.
Ulgiati
,
S.
,
Bargigli
,
S.
,
Raugei
,
M.
, and
Tabacco
,
A. M.
, 2002, “
Analisi energetica e valutazione di impatto ambientale della produzione ed uso di celle a combustibile a carbonati fusi
,” Final report to ENEA, rif. ENEA Prot. No. 1033/TEA of 10/11/2000, delivered Dec. 30.
3.
Raugei
,
M.
,
Bargigli
,
S.
, and
Ulgiati
,
S.
, 2005, “
A Multi-Criteria Life Cycle Assessment of Molten Carbonate Fuel Cells (MCFC). A Comparison to Natural Gas Turbines
,”
Int. J. Hydrogen Energy
0360-3199,
30
, pp.
123
130
.
4.
Ulgiati
,
S.
,
Bargigli
,
S.
, and
Raugei
,
M.
, 2005, “
Analisi di ciclo di vita della produzione di componenti innovativi per celle a combustibile a carbonati fusi
,” Report to ENEA, Prot. No. UGA/2003/1591, del 14/10/03, delivered on Oct. 5.
6.
Jenbacher Energie
, 1999, “
Moduli di cogenerazione azionati da motori Jenbacher “JMS*** GS-N.L.”
,” Publication of Jenbacher Energiesysteme, Mar. 22.
7.
Volvo
, Datasheet, Land and Marine Gas turbines VT 600 Datasheet—cogeneration.
8.
Turbec
, 2002, technical document, Turbec T-100Technical description datasheet D12451, Jun. 17.
9.
Turbec
, 2002, technical document, Maintenance Manual Turbec T100 serie 3, Doc. No. 13193-02.
10.
Marcenaro
,
B.
, and
Federici
,
F.
, 2005, “
MCFC Fuel Cells Development at Ansaldo Fuel Cells
,”
Proceedings of the International Hydrogen Energy Congress and Exhibition (ICHET 2005)
, Istanbul, Turkey, Jul. 13–15.
12.
Ansaldo Fuel Cells Ltd.
, 2008, Layout scheme D09734VX1000C, final revision, Jul. 14.
13.
TECSA AFCO
, 2006, “
Sviluppo di sistemi combinati cella/turbina attraverso la realizzazione e sperimentazione di un emulatore di un sistema MCFC. Obiettivo 2.2.1 Individuazione dello schema dell’impianto sperimentale comprensivo di allegato tecnico
,” Report to ENEA S06957AB9000C_rev0.
14.
ARI
, 2006, doc. T08452VX1000C, rev. 0, Technical attachment: “Dati dimensionanti impianto,” First revision, Oct. 24.
15.
Ulgiati
,
S.
,
Bargigli
,
S.
, and
Raugei
,
M.
, 2006, “
Overcoming the Inadequacy of Single-Criterion Approaches to Life Cycle Assessment
,”
Ecol. Modell.
0304-3800,
190
(
3–4
), pp.
432
442
.
16.
Bargigli
,
S.
,
Raugei
,
M.
, and
Ulgiati
,
S.
, 2004b, “
Mass Accounting and Mass Based Indicators
,”
Handbook of Ecological Indicators for Assessment of Ecosystem Health
,
CRC
,
Boca Raton, FL
.
17.
Herendeen
,
R. A.
, 1998, “
Embodied Energy, Embodied Everything…Now What?
,”
Advances in Energy Studies. Energy Flows in Ecology and Economy
,
S.
Ulgiati
,
M. T.
Brown
,
M.
Giampietro
,
R. A.
Herendeen
, and
K.
Mayumi
, eds.,
Musis
,
Roma, Italy
, pp.
13
48
.
18.
Odum
,
H. T.
, 1996,
Environmental Accounting: Emergy and Environmental Decision Making
,
Wiley
,
New York
.
19.
Brown
,
M. T.
, and
Ulgiati
,
S.
, 2004,
Emergy Analysis and Environmental Accounting
(
Encyclopedia of Energy
Vol.
2
),
Elsevier
,
New York
, pp.
329
354
.
20.
Ritthof
,
M.
,
Rohn
,
H.
, and
Liedtke
,
C.
, 2002, MIPS Berechnungen—Ressourcenproduktivität von Produkten und Dienstleistungen Wuppertal Spezial 27, Wuppertal Institute.
21.
Bousted
,
I.
, and
Hancock
,
G. F.
, 1978,
Handbook of Industrial Energy Analysis
,
Wiley
,
New York
.
22.
Szargut
,
J.
, and
Morris
,
D. R.
, 1998,
Exergy Analysis of Thermal, Chemical, and Metallurgical Processes
,
F. R.
Steward
, ed.,
Hemisphere
,
New York
.
23.
Odum
,
H. T.
, 1996,
Environmental Accounting: Emergy and Environmental Decision Making
,
Wiley
,
New York
, p.
370
.
25.
2000, CML 2 baseline, Centre of Environmental Science, Leiden University, The Netherlands, http://www.leidenuniv.nl/cml/ssp/projects/lca2/index.htmlhttp://www.leidenuniv.nl/cml/ssp/projects/lca2/index.html.
27.
Sciubba
,
E.
, and
Ulgiati
,
S.
, 2005, “
Emergy and Exergy Analyses: Complementary Methods or Irreducible Ideological Options?
,”
Energy
0360-5442,
30
(
10
), pp.
1953
1988
.
You do not currently have access to this content.