We report a model for coupled temperature and current distributions along the single channel in planar solid-oxide fuel cell stack. Approximate analytical solution to model equations is derived; the solution predicts that air and stack temperatures are close to each other and linearly increase with the distance along the channel. Maximal temperature at the channel outlet is proportional to the average stack current and inversely proportional to the air flow velocity. This means that temperature oscillations due to variable load can be compensated for by the respective variation in air flow velocity.

1.
Larrain
,
D.
,
Van Herle
,
J.
, and
Favrat
,
D.
, 2006, “
Simulation of SOFC Stack and Repeat Elements Including Interconnect Degradation and Anode Reoxidation Risk
,”
J. Power Sources
0378-7753,
161
, pp.
392
403
.
2.
Eikerling
,
M.
,
Kornyshev
,
A. A.
, and
Kulikovsky
,
A. A.
, 2007, “
Physical Modeling of Fuel Cells and Their Components
,”
Encyclopedia of Electrochemistry
, Vol.
5
,
A. J.
Bard
,
M.
Stratmann
,
D.
Macdonald
, and
P.
Schmuki
, eds.
Wiley
,
New York
, Sec. 8.2.
3.
Recknagle
,
K. P.
,
Wilford
,
R. E.
,
Chick
,
L. A.
,
Rector
,
D. R.
, and
Khaleel
,
M. A.
, 2003, “
Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks
,”
J. Power Sources
0378-7753,
113
, pp.
109
114
.
4.
Iora
,
P.
,
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
, 2005, “
Comparison of Two IT DIR-SOFC Models: Impact of Variable Thermodynamic, Physical, and Fow Properties. Steady-State and Dynamic Analysis
,”
Chem. Eng. Sci.
0009-2509,
60
, pp.
2963
2795
.
5.
Ji
,
Y.
,
Yuan
,
K.
,
Chung
,
J. N.
, and
Chen
,
Y. -C.
, 2006, “
Effects of Transport Scale on Heat/Mass Transfer and Performance Optimization for Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
161
, pp.
380
391
.
6.
Zhu
,
H.
,
Kee
,
R. J.
,
Janardhanan
,
V. M.
,
Deutschmann
,
O.
, and
Goodwin
,
D.
, 2005, “
Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
A2427
A2440
.
7.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2006, “
Diffusion and Chemical Reaction in the Porous Structures of Solid Oxide Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, p.
312
.
8.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2005, “
Numerical Investigation of the Air Flow Through a Bundle of IP-SOFC Modules
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5475
5478
.
9.
Huang
,
K.
,
Hou
,
P. Y.
, and
Goodenough
,
J. B.
, 2000, “
Characterization of Iron-Based Alloy Interconnects for Reduced Temperature Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
129
, pp.
237
250
.
10.
Yakabe
,
H.
,
Ogiwara
,
T.
,
Hishinuma
,
M.
, and
Yasuda
,
I.
, 2001, “
3–D Model Calculation for Planar SOFC
,”
J. Power Sources
0378-7753,
102
, pp.
144
154
.
11.
Inui
,
Y.
,
Ito
,
N.
,
Nakajima
,
T.
, and
Urata
,
A.
, 2006, “
Analytical Investigation on Cell Temperature Control Method of Planar Solid Oxide Fuel Cell
,”
Energy Convers. Manage.
0196-8904,
47
, pp.
2319
2328
.
You do not currently have access to this content.