This paper presents a model of a whole polymer electrolyte fuel cell system including the stack, an air compressor, a cooling system, and a power converter. This model allows its integration in a complete hybrid electric vehicle simulation. The level of detail of the model is chosen to enable control rules design, ancillaries sizing, and study of the interaction between the components of the vehicle. This model is formalized with energetic macroscopic representation, thus organized in a unified multidomain graphical description. Experimental results are compared to simulations for validation of the model accuracy.

1.
Cheddie
,
D.
, and
Munroe
,
N.
, 2005, “
Review and Comparison of Approaches to Proton Exchange Membrane Fuel Cell Modeling
,”
J. Power Sources
0378-7753,
147
(
1–2
), pp.
72
84
.
2.
Haraldsson
,
K.
, and
Wipke
,
K.
, 2004, “
Evaluating PEM Fuel Cell System Models
,”
J. Power Sources
0378-7753,
126
(
1–2
), pp.
88
97
.
3.
Djilali
,
N.
, 2007, “
Computational Modelling of Polymer Electrolyte Membrane (PEM) Fuel Cells: Challenges and Opportunities
,”
Energy
0360-5442,
32
(
4
), pp.
269
280
.
4.
Chi
,
P.-H.
,
Weng
,
F.-B.
, and
Chan
,
S.-H.
, 2006, “
Numerical Modeling of Proton Exchange Membrane Fuel Cell With Considering Thermal and Relative Humidity Effects on the Cell Performance
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
292
302
.
5.
Sadiq Al-Baghdadi
,
M. A. R.
, and
Shahad Al-Janabi
,
H. A. K.
, 2007, “
Parametric and Optimization Study of a PEM Fuel Cell Performance Using Three-Dimensional Computational Fluid Dynamics Model
,”
Renewable Energy
0960-1481,
32
(
7
), pp.
1077
1101
.
6.
Vorobev
,
A.
,
Zikanov
,
O.
, and
Shamim
,
T.
, 2007, “
A Computational Model of a PEM Fuel Cell With Finite Vapor Absorption Rate
,”
J. Power Sources
0378-7753,
166
(
1
), pp.
92
103
.
7.
Radu
,
R.
, and
Taccani
,
R.
, 2006, “
Simulink-Femlab Integrated Dynamic Model for a PEM Fuel Cell System
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
452
458
.
8.
Pukrushpan
,
J. T.
,
Stephanopoulou
,
A. G.
, and
Peng
,
H.
, 2004,
Control of Fuel Cell Power Systems
,
Springer
,
New York
.
9.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
Wiley
,
New York
.
10.
Standaert
,
F.
,
Hemmes
,
K.
, and
Woudstra
,
N.
, 1998, “
Analytical Fuel Cell Modeling; Non-Isothermal Fuel Cells
,”
J. Power Sources
0378-7753,
70
(
2
), pp.
181
199
.
11.
Reggiani
,
U.
,
Sandrolini
,
L.
, and
Giuliattini Burbui
,
G. L.
, 2007, “
Modelling a PEM Fuel Cell Stack With a Nonlinear Equivalent Circuit
,”
J. Power Sources
0378-7753,
165
(
1
), pp.
224
231
.
12.
Costa
,
R. A.
, and
Camacho
,
J. R.
, 2006, “
The Dynamic and Steady State Behavior of a PEM Fuel Cell as an Electric Energy Source
,”
J. Power Sources
0378-7753,
161
(
2
), pp.
1176
1182
.
13.
Hou
,
Y.
,
Zhuang
,
M.
, and
Wan
,
G.
, 2007, “
A Transient Semi-Empirical Voltage Model of a Fuel Cell Stack
,”
Int. J. Hydrogen Energy
0360-3199,
32
(
7
), pp.
857
862
.
14.
Wang
,
C.
,
Nehrir
,
M. H.
, and
Shaw
,
S. R.
, 2005, “
Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits
,”
IEEE Trans. Energy Convers.
0885-8969,
20
(
2
), pp.
442
451
.
15.
Yu
,
D.
, and
Yuvarajan
,
S.
, 2004, “
A Novel Circuit Model for PEM Fuel Cells
,”
19th Annual IEEE Applied Power Electronics Conference and Exposition, APEC ’04
, Vol.
1
, pp.
362
366
.
16.
Grasser
,
F.
, and
Rufer
,
A. C.
, 2006, “
A Fully Analytical PEM Fuel Cell System Model for Control Applications
,”
Industry Applications Conference, 41st IAS Annual Meeting, Conference Record of the 2006 IEEE
, October, Vol.
5
, pp.
2162
2168
.
17.
Bao
,
C.
,
Ouyang
,
M.
, and
Yi
,
B.
, 2006, “
Modeling and Control of Air Stream and Hydrogen Flow With Recirculation in a PEM Fuel Cell System—I. Control-Oriented Modeling
,”
Int. J. Hydrogen Energy
0360-3199,
31
(
13
), pp.
1879
1896
.
18.
Choe
,
S.-Y.
,
Lee
,
J.-G.
,
Ahn
,
J.-W.
, and
Baek
,
S.-H.
, 2007, “
Integrated Modeling and Control of a PEM Fuel Cell Power System With a PWM DC/DC Converter
,”
J. Power Sources
0378-7753,
164
(
2
), pp.
614
623
.
19.
Muller
,
E. A.
, and
Stefanopoulou
,
A. G.
, 2006, “
Analysis, Modeling, and Validation for the Thermal Dynamics of a Polymer Electrolyte Membrane Fuel Cell System
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
99
110
.
20.
Di Penta
,
D.
,
Bencherif
,
K.
,
Sorine
,
M.
, and
Zhang
,
Q.
, 2006, “
A Reduced Fuel Cell Stack Model for Control and Fault Diagnosis
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
384
388
.
21.
Bouscayrol
,
A.
,
Pietrzal-David
,
M.
,
Delarue
,
P.
,
Pena-Eguiluz
,
R.
,
Vidal
,
P.-E.
, and
Kestelyn
,
X.
, 2006, “
Weighted Control of Traction Drives With Parallel-Connected AC Machines
,”
IEEE Trans. Ind. Electron.
0278-0046,
IE-53
(
6
), pp.
1799
1806
.
22.
Lhomme
,
W.
,
Delarue
,
P.
,
Barrade
,
P.
, and
Bouscayrol
,
A.
, 2005, “
Maximum Control Structure of a Series Hybrid Electric Vehicle using Supercapacitors
,”
EVS’21 (Electric Vehicle Symposium)
, Monaco, Apr.
23.
Iwasaki
,
I.
, and
Simon
,
H. A.
, “
Causality and Model Abstraction
,”
Artif. Intell.
0004-3702,
67
, 1994, pp.
143
194
.
24.
Barre
,
P. J.
,
Bouscayrol
,
A.
,
Delarue
,
P.
,
Dumetz
,
E.
,
Giraud
,
F.
,
Hautier
,
J. P.
,
Kestelyn
,
X.
,
Lemaire-Semail
,
B.
, and
Semail
,
E.
, 2006, “
Inversion-Based Control of Electromechanical Systems Using Causal Graphical Descriptions
,”
IEEE-IECON’06 (Industrial Electronics and Control Conférence)
, Paris, Nov.
25.
Chnani
,
M.
,
Maker
,
H.
,
Péra
,
M. C.
,
Candusso
,
D.
, and
Hissel
,
D.
, 2005, “
Electrical Analogy Modelling of a PEFC System Fed by a Compressor
,”
EPEFC’05 European Polymer Electrolyte Fuel Cell Forum
, Lucerne, Jul.
26.
Destoop
,
T.
, 1989,
Compresseurs Volumétriques
, Tome BL2,
Techniques de l’Ingénieur
,
Paris
, Réf. B4 220, in French.
27.
Tekin
,
M.
,
Hissel
,
D.
,
Pera
,
M.-C.
, and
Kauffmann
,
J.-M.
, 2006, “
Energy Consumption Reduction of a PEM Fuel Cell Motor-Compressor Group Thanks to Efficient Control Laws
,”
J. Power Sources
0378-7753,
156
(
1
), pp.
57
63
.
28.
Attanasio
,
R.
,
Cacciato
,
M.
,
Gennaro
,
F.
, and
Consoli
,
A.
, “
An Innovative Boost Converter for Fuel Cells Stationary Generation Systems
,”
IEEE-IECON’04 (Industrial Electronics and Control Conférence)
, 2004, Busan, Nov., Vol.
3
, pp.
2831
2836
.
29.
Choi
,
D.-K.
,
Lee
,
B.-K.
,
Choi
,
S.-W.
,
Won
,
C.-Y.
, and
Yoo
,
D.-W.
, 2005, “
A Novel Power Conversion Circuit for Cost-Effective Battery-Fuel Cell Hybrid Systems
,”
J. Power Sources
0378-7753,
152
, pp.
245
255
.
30.
Kim
,
J.-T.
,
Lee
,
B.-K.
,
Lee
,
T.-W.
,
Jang
,
S.-J.
,
Kim
,
S.-S.
, and
Won
,
C.-Y.
, 2004, “
An Active Clamping Current-Fed Half-Bridge Converter for Fuel-Cell Generation Systems
,”
IEEE-PESC’04 (Power Electronics Specialist Conférence)
, Aachen, Jun., Vol.
6
, pp.
4709
4714
.
31.
Xu
,
H.
,
Kong
,
L.
, and
Wen
,
X.
, 2004, “
Fuel Cell Power System and High Power DC-DC Converter
,”
IEEE Trans. Power Electron.
0885-8993,
19
(
5
), pp.
1250
1255
.
32.
Delarue
,
P.
,
Bouscayrol
,
A.
, and
Semail
,
E.
, 2003, “
Generic Control Method of Multi-Leg Voltage-Source-Converters for Fast Practical Implementation
,”
IEEE Trans. Power Electron.
0885-8993,
18
(
2
), pp.
517
526
.
33.
Boulon
,
L.
,
Péra
,
M.-C.
,
Hissel
,
D.
,
Bouscayrol
,
A.
, and
Delarue
,
Ph.
, 2007, “
Energetic Macroscopic Representation of a Fuel Cell-Supercapacitor System
,”
Proceedings of the IEEE-VPPC (CD-ROM)
,
Arlington
,
TX
.
You do not currently have access to this content.