The most important component of the fuel cell is the membrane electrolyte, having the fundamental responsibility of separating protons and electrons. Minor defects (e.g., pin holes) in the film will cause premature and/or catastrophic failure. As such, special attention should be given to the manufacturing of this fuel cell component. Increased interest in identifying and overcoming the technical and manufacturing challenges associated with fuel cells has surfaced over the past few years. To this end, a design methodology, the science, and the technology to manufacture unique high-temperature polymer electrolyte membranes in a uniform and continuous manner are presented, specifically focusing on system conceptualization, design, and modeling. It has been shown that an overall manufacturing system can be designed for a power-law fluid with time-temperature varying properties.

1.
Baker
,
R.
, 2000,
Membrane Technology and Applications
,
McGraw-Hill
,
New York
.
2.
Mehta
,
V.
, and
Cooper
,
J.
, 2003, “
Review and Analysis of PEM Fuel Cell Design and Manufacturing
,”
J. Power Sources
0378-7753,
114
, pp.
32
53
.
3.
Department of Energy (DoE)
, 2005, “
Manufacturing Research & Development of PEM Fuel Cell Systems for Transportation Applications
,”
Background Material for the Manufacturing R&D Workshop
, Jul.
5.
Appleby
,
A. J.
, 1996, “
Erratum to Issues in Fuel Cell Commercialization
,”
J. Power Sources
0378-7753,
58
, pp.
153
176
.
6.
Wang
,
J. T.
,
Savinell
,
R. F.
,
Wainright
,
J.
,
Litt
,
M.
, and
Yu
,
H.
, 1996, “
A H2/O2
Fuel Cell Using Acid Doped Polybenzimidazole as Polymer Electrolyte,”
Electrochim. Acta
0013-4686,
41
, pp.
193
197
.
7.
Giordano
,
N.
,
Staiti
,
P.
,
Hocevar
,
S.
, and
Arico
,
S.
, 1996, “
High Performance Fuel Cell Based on Phosphotungstic Acid as Proton Conducting Electrolyte
,”
Electrochim. Acta
0013-4686,
41
, pp.
397
403
.
8.
Kreuer
,
K. D.
, 1997, “
On the Development of Proton Conducting Materials for Technological Applications
,”
Solid State Ionics
0167-2738,
97
, pp.
1
15
.
9.
Savadogo
,
O.
, and
Xing
,
B.
, 2000, “
Hydrogen/Oxygen Polymer Electrolyte Membrane Fuel Cell (PEMFC) Based on Acid-Doped Polybenzimidazole (PBI)
,”
J. New Mater. Electrochem. Syst.
1480-2422,
3
, pp.
345
349
.
10.
Alberti
,
G.
,
Casciola
,
M.
,
Massinelli
,
L.
, and
Bauer
,
B.
, 2001, “
Polymeric Proton Conducting Membranes for Medium Temperature Fuel Cells (110–160°C)
,”
J. Membr. Sci.
0376-7388,
185
, pp.
73
81
.
11.
Perry
,
M. L.
, and
Fuller
,
T. F.
, 2002, “
A Historical Perspective of Fuel Cell Technology in the 20th Century
,”
J. Electrochem. Soc.
0013-4651,
149
, pp.
S59
S67
.
12.
Nakajima
,
H.
,
Nomura
,
S.
,
Sugimoto
,
T.
,
Nishikawa
,
S.
, and
Honma
,
I.
, 2002, “
High Temperature Proton Conducting Organic/Inorganic Nanohybrids for Polymer Electrolyte Membrane
,”
J. Electrochem. Soc.
0013-4651,
149
, pp.
A953
A959
.
13.
Xiao
,
L.
, 2003, “
Novel Polybenzimidazole Derivatives for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications
,” doctoral thesis, Rensselaer Polytechnic Institute, Troy, NY.
14.
Johnson
,
A.
, and
Flori
,
A.
, 2001, “
High Density and Fine Feature Solder Paste Printing
,”
Proceedings of APEX
.
15.
Sandia National Laboratory
, 2004, “
Sandia Polymer Electrolyte Membrane Brings Goal of a High Temperature PEM Fuel Cell Closer
,” available at http://www.sandia.gov/news-center/news-releases/2004/renew-energy-batt/microfuel.htmlhttp://www.sandia.gov/news-center/news-releases/2004/renew-energy-batt/microfuel.html.
16.
Glenn Research Center
, 2004, “
Polymer Membranes for High-Temperature PEM Fuel Cells and Solid Polymer Batteries
,” Article No. M-1406-3, available at http://technology.grc.nasa.gov/tops/TOP300178.pdfhttp://technology.grc.nasa.gov/tops/TOP300178.pdf.
18.
Xiao
,
L.
,
Zhang
,
H.
,
Jana
,
T.
,
Scanlon
,
E.
,
Chen
,
R.
,
Choe
,
E. -W.
,
Ramanathan
,
L.
,
Yu
,
S.
, and
Benicewicz
,
B. C.
, 2005, “
Synthesis and Characterization of Pyridine-Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications
,”
Fuel Cells
1615-6846,
5
(
2
), pp.
287
295
.
21.
Harris
,
T. A. L.
, 2006, “
Design Methodology, Science, And Technology To Manufacture High Temperature Polymer Electrolyte Membranes For Fuel Cells
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
22.
Harris
,
T.
,
Walczyk
,
D.
,
O’Donnell
,
R.
and
Puffer
,
R.
, 2004, “
Design of an Experimental Test Bed for Depositing Membrane Material for High Temperature Fuel Cells
,”
Trans. NAMRI/SME
1047-3025,
32
, pp.
431
438
.
23.
Chong
,
J.
, 1997, “
Coating Weight Uniformity and Die Internal Design
,”
J. Imaging Sci. Technol.
1062-3701,
41
(
1
), pp.
41
47
.
24.
Curtin
,
D.
, and
Howard
,
E.
, Jr.
, 2003, U.S. Patent No. 6,552,093.
30.
Lousenberg
,
D.
,
Henry
,
T.
,
Curtin
,
D.
,
Tisack
,
M.
, and
Tangeman
,
P.
, 2003,
Differentiated Membranes and Dispersions for Commercial PEM Fuel Cell and Electrolysis Systems
,
Fuel Cell Seminar
,
DuPont-Fayetteville Works
,
Fayetteville, NC
.
31.
Carlson
,
E. J.
,
Kopf
,
P.
,
Sinha
,
J.
,
Sriramulu
,
S.
, and
Yang
,
Y.
, 2005, “
Cost Analysis of PEM Fuel Cell
,” National Renewable Energy Laboratory (NREL), Systems for Transportation, Report No. NREL/SR-560-39104.
32.
Harris
,
T. A.
, and
Walczyk
,
D. F.
, 2006, “
Development of a Casting Technique for Membrane Material Used in High Temperature PEM Fuel Cells
,”
J. Manuf. Process.
1526-6125,
8
(
1
), pp.
8
20
.
33.
Chhabra
,
R.
, and
Richardson
,
J.
, 1999,
Non-Newtonian Flow in the Process Industries
,
Butterworth-Heinemann
,
Oxford
.
34.
Extrusion Die Industries, LLC
, 2006, www.extrusiondies.comwww.extrusiondies.com.
35.
Skelland
,
A. H. P.
, 1967,
Non-Newtonian Flow and Heat Transfer
,
Wiley
,
New York
.
36.
Metzner
,
A. B.
, and
Reed
,
J.
, 1955, “
Flow of Non-Newtonian Fluids Correlation of the Laminar, Transition, and Turbulent-Flow Regions
,”
AIChE J.
0001-1541,
1
, pp.
434
440
.
37.
Kittridge
,
C. P.
, and
Rowley
,
D. S.
, 1957, “
Resistance Coefficients for Laminar and Turbulent Flow Through One-Half Inch Valves and Fittings
,”
Trans. ASME
0097-6822,
79
, pp.
1759
1766
.
38.
Geankoplis
,
C.
, 1993,
Transport Processes and Unit Operations
, 3rd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
, p.
94
.
39.
Wen
,
S.
, and
Liu
,
T.
, 1995, “
Extrusion Die Design for Multiple Stripes
,”
Polym. Eng. Sci.
0032-3888,
35
, pp.
759
767
.
40.
Weinstein
,
S. J.
, and
Ruschak
,
K. J.
, 1996, “
Asymptotic Analysis of Die Flow for Shear-Thinning Fluids
,”
AIChE J.
0001-1541,
42
(
6
), pp.
1501
1513
.
41.
Yuan
,
S.
, 1995, “
A Flow Model for Non-Newtonian Liquids Inside a Slot Die
,”
Polym. Eng. Sci.
0032-3888,
35
, pp.
577
586
.
42.
Leonard
,
W.
, 1985, “
Inertial and Gravitational Effects in Extrusion Dies for Non-Newtonian Fluids
,”
Polym. Eng. Sci.
0032-3888,
25
(
9
), pp.
570
576
.
43.
Jeong
,
K.
, and
Oh
,
B.
, 2002, “
Fuel Economy and Life-Cycle Cost Analysis of a Fuel Cell Hybrid Vehicle
,”
J. Power Sources
0378-7753,
105
, pp.
58
65
.
44.
Penner
,
S.
,
Appleby
,
A.
,
Baker
,
B.
,
Bates
,
J.
,
Buss
,
L.
,
Dollard
,
W.
,
Farris
,
P.
,
Gillis
,
E.
,
Gunsher
,
J.
,
Khankar
,
A.
,
Krumpelt
,
M.
,
O’Sullivan
,
J.
,
Runte
,
G.
,
Savinell
,
R.
,
Selman
,
J.
,
Shores
,
D.
, and
Tarman
,
P.
, 1995, “
Commercialization of Fuel Cells
,”
Prog. Energy Combust. Sci.
0360-1285,
21
, pp.
145
151
.
You do not currently have access to this content.