In this work, a three-dimensional model of a solid oxide fuel cell (SOFC) stack is developed to predict the temperature distribution across the stack. The model simulates a particular SOFC stack comprising of five single cells. Isothermal and adiabatic walls are chosen as the different boundary conditions in order to simulate the real situation, which lies somewhere in between. In the situation where adiabatic walls are assumed, the result shows that heat convection dominates the heat transfer process. However, heat conduction plays a major role when the isothermal walls are assumed. It is found that the highest temperature found in the isothermal stack is 1135 K at an operating temperature of 1073 K. The temperature difference is significant with the hottest point located in the middle of the active area. In the adiabatic stack, the temperature is at its maximum of 1574 K near the outlets of fuel and air at the same operating temperature. It should be kept in mind that both situations will have effects on the temperature behavior of the stack in reality. The temperature and current distributions of stack models in this work are also plotted in three dimensions and the analyses of stack performances are given. By comparing the results of five-cell and ten-cell stack models, the temperature differences of the five-cell stack and the ten-cell stack are 62 and 109 K, respectively. This indicates that there is a drastic temperature change throughout the stack when the stack size is increased.

1.
Ioselevich
,
A. S.
, and
Kornyshev
,
A. A.
, 2001, “
Phenomenological Theory of Solid Oxide Fuel Cell Anode
,”
Fuel Cells
,
1
(
1
), pp.
40
65
. 1615-6846
2.
Lehnert
,
W.
,
Meusinger
,
J.
, and
Thom
,
F.
, 2000, “
Modelling of gas Transport Phenomena in SOFC Anodes
,”
J. Power Sources
0378-7753,
87
, pp.
57
63
.
3.
Chan
,
S. H.
,
Low
,
C. F.
, and
Ding
,
O. L.
, 2002, “
Energy and Exergy Analysis of Simple Solid Oxide Fuel Cell Power Systems
,”
J. Power Sources
0378-7753,
103
, pp.
188
200
.
4.
Tanaka
,
K.
,
Wen
,
C.
, and
Yamada
,
K.
, 2000, “
Design and Evaluation of Combined Cycle System With Solid Oxide Fuel Cell and Gas Turbine
,”
Fuel
0016-2361,
79
, pp.
1493
1507
.
5.
Kobayashi
,
N.
,
Fujimura
,
H.
, and
Ohtsuka
,
K.
, 1989, “
Heat and Mass Transfer in a Molten Carbonate Fuel Cell
,”
Int. J. the Japanese Soc. Mech. Eng., Series II
,
32
(
3
), pp.
420
427
.
6.
Achenbach
,
E.
, 1994, “
Three-Dimensional and Time-Dependent Simulation of Planar Solid Oxide Fuel Cell Stack
,”
J. Power Sources
0378-7753,
49
, pp.
333
348
.
7.
He
,
W.
, and
Chen
,
Q.
, 1995, “
Three-Dimensional Simulation of a Molten Carbonate Fuel Cell Stack Using Computational Fluid Dynamics Technique
,”
J. Power Sources
0378-7753,
55
, pp.
25
35
.
8.
Koh
,
J. -H.
,
Seo
,
H. -K.
,
Yoo
,
Y. -S.
, and
Lim
,
H. C.
, 2002, “
Consideration of Numerical Simulation Parameters and Heat Transfer Models for a Molten Carbonate Fuel Cell Stack
,”
Chem. Eng. J.
0300-9467,
87
, pp.
367
379
.
9.
Burt
,
A. C.
,
Celik
,
I. B.
,
Gemmen
,
R. S.
,
Smirnov
,
A. V.
, and
Rogers
,
W. A.
, 2004, “
Cell-to-Cell Variations With Increasing SOFC Stack Size
,”
Second International Conference on Fuel Cell Science, Engineering and Technology
, Jun. 14–16,
R. K.
Shah
and
S. G.
Kandlikar
, eds.,
ASME
,
Rochester, NY
, pp.
31
38
.
10.
Sudaprasert
,
K.
,
Travis
,
R. P.
, and
Martinez-Botas
,
R. F.
, 2005, “
A Computational Fluid Dynamics Model of a Solid Oxide Fuel Cell
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
219
(
A3
), pp.
159
167
.
11.
Aguiar
,
P.
,
Chadwick
,
D.
, and
Kershenbaum
,
L.
, 2002, “
Modelling of an Indirect Internal Reforming Solid Oxide Fuel Cell
,”
Chem. Eng. Sci.
0009-2509,
57
, pp.
1665
1677
.
12.
Recknagle
,
K. P.
,
Williford
,
R. E.
,
Chick
,
L. A.
,
Rector
,
D. R.
, and
Khaleel
,
M. A.
, 2003, “
Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks
,”
J. Power Sources
0378-7753,
113
, pp.
109
114
.
13.
Wark
,
K.
, Jr.
, 1995,
Advanced Thermodynamics for Engineers
,
McGraw-Hill
,
New York
.
14.
1999, STAR-CD, version 3.10A, Computational Dynamics Ltd.
15.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
, 1987,
The Properties of Gases and Liquids
,
4th ed.
,
McGraw-Hill
,
Boston
.
16.
Larminie
,
J.
, and
Dicks
,
A.
, 2000,
Fuel Cell Systems Explained
,
Wiley
,
Chichester, UK
.
17.
Ferguson
,
J. R.
,
Fiard
,
J. M.
, and
Herbin
,
R.
, 1996, “
Three-Dimensional Numerical Simulation for Various Geometries of Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
58
, pp.
109
122
.
18.
Chan
,
S. H.
,
Ho
,
H. K.
, and
Tian
,
Y.
, 2002, “
Modelling of Simple Hybrid Solid Oxide Fuel Cell and Gas Turbine Power Plant
,”
J. Power Sources
0378-7753,
109
, pp.
111
120
.
19.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
, 2001, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
0378-7753,
93
, pp.
130
140
.
20.
Dong
,
W.
,
Price
,
G.
, and
Wightman
,
B.
, 2002, “
Modeling of SOFC Stack and System Components
,”
Fifth European Solid Oxide Fuel Cell Forum
,
J.
Huijsmans
, ed., Lucerne, Switzerland, pp.
929
936
.
21.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
, 2000, “
Three-Dimensional Numerical Simulation of Straight Channel PEM Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
30
, pp.
135
146
.
22.
Shimpalee
,
S.
, and
Dutta
,
S.
, 2000, “
Numerical Prediction of Temperature Distribution in PEM Fuel Cells
,”
Numer. Heat Transfer, Part A
1040-7782,
38
, pp.
111
128
.
23.
Burt
,
A. C.
,
Celik
,
I. B.
,
Gemmen
,
R. S.
, and
Smirnov
,
A. V.
, 2004, “
A Numerical Study of Cell-to-Cell Variations in a SOFC Stack
,”
J. Power Sources
0378-7753,
126
, pp.
76
87
.
You do not currently have access to this content.