Each fuel cell component of a proton exchange membrane fuel cell (PEMFC) used in automotive application operates most effectively (from performance and durability standpoints) within specific ranges of water content and temperature. The water and heat transport processes are coupled and present a challenge in providing the right balance over the entire range of operating conditions. Another important related aspect is CO poisoning of the electrocatalyst, which adversely affects the fuel cell performance. Freezing and cold-start present additional challenges for automotive PEMFCs. A critical review of the recent developments on these topics is presented in this paper. The study covers both the microscopic and macroscopic aspects of the transport within membrane, catalyst layers, gas diffusion layers, and gas channels, and an overview of the current PEMFC cooling technology. After discussing the current status, suggestions for future work on the above topics are presented.

1.
Wang
,
C. Y.
, 2004, “
Fundamental Models for Fuel Cell Engineering
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
, pp.
4727
4766
.
2.
Faghri
,
A.
, and
Guo
,
Z.
, 2005, “
Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3891
3920
.
3.
Zawodzinski
, Jr.,
T. A.
,
Derouin
,
C.
,
Radzinski
,
S.
,
Sherman
,
R. J.
,
Smith
,
V. T.
,
Springer
,
T. E.
, and
Gottesfeld
,
S.
, 1993, “
Water Uptake by and Transport Through Nafion 117 Membranes
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
1041
1047
.
4.
Bauer
,
F.
,
Denneler
,
S.
, and
Willert-Porada
,
M.
, 2005, “
Influence of Temperature and Humidity on the Mechanical Properties of Nafion® 117 Polymer Electrolyte Membrane
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
43
, pp.
786
795
.
5.
Young
,
S. K.
, and
Mauritz
,
K. A.
, 2001, “
Dynamic Mechanical Analyses of Nafion®/Organically Modified Silicate Nanocomposites
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
39
, pp.
1282
1295
.
6.
Kandlikar
,
S. G.
, 2007, “
Microscale and Macroscale Aspects of Water Management Challenges in PEM Fuel Cells
,”
Heat Transfer Eng.
0145-7632,
29
, pp.
575
587
.
7.
Shan
,
Y.
, and
Choe
,
S. Y.
, 2005, “
A High Dynamic PEM Fuel Cell Model With Temperature Effects
,”
J. Power Sources
0378-7753,
145
, pp.
30
39
.
8.
Weber
,
A. Z.
, and
Newman
,
J.
, 2006, “
Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
A2205
A2214
.
9.
Tuber
,
K.
,
Pocza
,
D.
, and
Hebling
,
C.
, 2003, “
Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell
,”
J. Power Sources
0378-7753,
124
, pp.
403
414
.
10.
Yang
,
X. G.
,
Zhang
,
F. Y.
,
Lubawy
,
A. L.
, and
Wang
,
C. Y.
, 2004, “
Visualization of Liquid Water Transport in a PEFC
,”
Electrochem. Solid-State Lett.
1099-0062,
7
, pp.
A408
A411
.
11.
Zhang
,
F. Y.
,
Yang
,
X. G.
, and
Wang
,
C. Y.
, 2006, “
Liquid Water Removal From a Polymer Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
A225
A232
.
12.
Turhan
,
A.
,
Heller
,
K.
,
Brenizer
,
J. S.
, and
Mench
,
M. M.
, 2006, “
Quantification of Liquid Water Accumulation and Distribution in a Polymer Electrolyte Fuel Cell Using Neutron Imaging
,”
J. Power Sources
0378-7753,
160
, pp.
1195
1203
.
13.
Pekula
,
N.
,
Heller
,
K.
,
Chung
,
P. A.
,
Turhan
,
A.
,
Mench
,
M. M.
,
Brenizer
,
J. S.
, and
Unlu
,
K.
, 2005, “
Study of Water Distribution and Transport in a Polymer Electrolyte Fuel Cell Using Neutron Imaging
,”
Nucl. Instrum. Methods Phys. Res. A
0168-9002,
542
, pp.
134
141
.
14.
Chen
,
Y.
,
Peng
,
H.
,
Hussey
,
D. S.
,
Jacobson
,
D. L.
,
Tran
,
D. T.
,
Abdel-Baset
,
T.
, and
Biernacki
,
M.
, 2007, “
Water Distribution Measurement for a PEMFC Through Neutron Radiography
,”
J. Power Sources
0378-7753,
170
, pp.
376
386
.
15.
Ge
,
S.
, and
Wang
,
C. Y.
, 2007, “
Liquid Water Formation and Transport in the PEFC Anode
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B998
B1005
.
16.
Spernjak
,
D.
,
Prasad
,
A. K.
, and
Advani
,
S. G.
, 2007, “
Experimental Investigation of Liquid Water Formation and Transport in a Transparent Single-Serpentine PEM Fuel Cell
,”
J. Power Sources
0378-7753,
170
, pp.
334
344
.
17.
Trabold
,
T. A.
,
Owejan
,
J. P.
,
Jacobson
,
D. L.
,
Arif
,
M.
, and
Huffman
,
P. R.
, 2006, “
In Situ Investigation of Water Transport in an Operating PEM Fuel Cell Using Neutron Radiography: Part I—Experimental Method and Serpentine Flow Field Results
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4712
4720
.
18.
Owejan
,
J. P.
,
Trabold
,
T. A.
,
Jacobson
,
D. L.
,
Baker
,
D. R.
,
Hussey
,
D. S.
, and
Arif
,
M.
, 2006, “
In Situ Investigation of Water Transport in an Operating PEM Fuel Cell Using Neutron Radiography: Part II—Transient Water Accumulation in an Interdigitated Cathode Flow Field
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4721
4731
.
19.
Vie
,
P. J. S.
, and
Kjelstrup
,
S.
, 2004, “
Thermal Conductivities from Temperature Profiles in the Polymer Electrolyte Fuel Cell
,”
Electrochim. Acta
0013-4686,
49
, pp.
1069
1077
.
20.
Shimoi
,
R.
,
Masuda
,
M.
,
Fushinobu
,
K.
,
Kozawa
,
Y.
, and
Okazaki
,
K.
, 2004, “
Visualization of the Membrane Temperature Field of a Polymer Electrolyte Fuel Cell
,”
ASME J. Energy Resour. Technol.
0195-0738,
126
, pp.
258
261
.
21.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
94
, pp.
40
50
.
22.
Weber
,
A.
, and
Newman
,
J.
, 2004, “
Transport in Polymer Electrolyte Membranes III. Model Validation in a Simple Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A326
A339
.
23.
Um
,
S.
, and
Wang
,
C. Y.
, 2004, “
Three Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
125
, pp.
40
51
.
24.
Pasaogullari
,
U.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2005, “
Two-Phase Transport in Polymer Electrolyte Fuel Cells With Bilayer Cathode Gas Diffusion Media
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
A15744
A1582
.
25.
Wang
,
Y.
, and
Wang
,
C. Y.
, 2006, “
A Non-Isothermal, Two-Phase Model for Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
A1193
A1200
.
26.
Fuller
,
T. F.
, and
Newman
,
J.
, 1993, “
Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
1218
1225
.
27.
Nguyen
,
T.
, and
White
,
R.
, 1993, “
A Water and Heat Management Model for Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
2178
2186
.
28.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Harris
,
T. J.
, 1995, “
Performance Modeling of BALLARD MARK IV Solid Polymer Electrolyte Fuel Cell I. Mathematical Model Development
,”
J. Electrochem. Soc.
0013-4651,
142
, pp.
9
15
.
29.
Zhang
,
Y.
,
Ouyang
,
M.
,
Lu
,
Q.
,
Luo
,
J.
, and
Li
,
X.
, 2004, “
A Model Predicting Performance of Proton Exchange Membrane Fuel Cell Stack Thermal Systems
,”
Appl. Therm. Eng.
1359-4311,
24
, pp.
501
513
.
30.
Maggio
,
G.
,
Recupero
,
V.
, and
Mantegazza
,
C.
, 1996, “
Modeling of Temperature Distribution in a Solid Polymer Electrolyte Fuel Cell Stack
,”
J. Power Sources
0378-7753,
62
, pp.
167
174
.
31.
Djilali
,
N.
, and
Lu
,
D. M.
, 2002, “
Influence of Heat Transfer on Gas and Water Transport in Fuel Cells
,”
Int. J. Therm. Sci.
1290-0729,
41
, pp.
29
40
.
32.
Hwang
,
J. J.
, 2006, “
Thermal-Electrochemical Modeling of a Proton Exchange Membrane Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
A216
A224
.
33.
Ju
,
H.
,
Meng
,
H.
, and
Wang
,
C. Y.
, 2005, “
A Single-Phase, Non-Isothermal Model for PEM Fuel Cells
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1303
1315
.
34.
Muller
,
E. A.
, and
Stefanopoulou
,
A. G.
, 2006, “
Analysis, Modeling, and Validation for the Thermal Dynamics of a Polymer Electrolyte Membrane Fuel Cell System
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
99
110
.
35.
Zong
,
Y.
,
Zhou
,
B.
, and
Sobiesiak
,
A.
, 2006, “
Water and Thermal Management in a Single PEM Fuel Cell With Non-Uniform Stack Temperature
,”
J. Power Sources
0378-7753,
161
, pp.
143
159
.
36.
Xue
,
X.
, and
Tang
,
J.
, 2005, “
PEM Fuel Cell Dynamic Model With Phase Change Effect
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
, pp.
274
283
.
37.
Yu
,
X.
,
Zhou
,
B.
, and
Sobiesiak
,
A.
, 2005, “
Water and Thermal Management of Ballard PEM Fuel Cell Stack
,”
J. Power Sources
0378-7753,
147
, pp.
184
195
.
38.
Yan
,
X.
,
Hou
,
M.
,
Sun
,
L.
,
Cheng
,
H.
,
Hong
,
Y.
,
Liang
,
D.
,
Shen
,
Q.
,
Ming
,
P.
, and
Yi
,
B.
, 2007, “
The Study on Transient Characteristic of Proton Exchange Membrane Fuel Cell Stack During Dynamic Loading
,”
J. Power Sources
0378-7753,
163
, pp.
966
970
.
39.
Wang
,
Y.
, and
Wang
,
C. Y.
, 2005, “
Transient Analysis of Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
50
, pp.
1307
1315
.
40.
Wang
,
Y.
, and
Wang
,
C. Y.
, 2007, “
Two-Phase Transients in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B636
-
B643
.
41.
Yao
,
K. Z.
,
Karan
,
K.
,
McAuley
,
K. B.
,
Oosthuizen
,
P.
,
Peppley
,
B.
, and
Xie
,
T.
, 2004, “
A Review of Mathematical Models for Hydrogen and Direct Methanol Polymer Electrolyte Membrane Fuel Cells
,”
Fuel Cells
1615-6846,
4
, pp.
3
29
.
42.
Mauritz
,
K. A.
, and
Moore
,
R. B.
, 2004, “
State of Understanding of Nafion
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
, pp.
4535
4585
.
43.
Rollet
,
A. L.
,
Diat
,
O.
, and
Gebel
,
G.
, 2002, “
A New Insight Into Nafion Structure
,”
J. Phys. Chem. B
1089-5647,
106
, pp.
3033
3036
.
44.
Gebel
,
G.
, and
Atkins
,
P.
, 2000, “
Structural Evolution of Water Swollen Perfluorosulfonated Ionomers from Dry Membrane to Solution
,”
Polymer
0032-3861,
41
, pp.
5829
5838
.
45.
Kreuer
,
K. D.
,
Paddison
,
S. J.
,
Spohr
,
E.
, and
Schuster
,
M.
, 2004, “
Transport in Proton Conductors for Fuel-Cell Applications: Simulations, Elementary Reactions, and Phenomenology
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
, pp.
4637
4678
.
46.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
2334
2342
.
47.
Yang
,
C.
,
Srinivasan
,
S.
,
Bocarsly
,
A. B.
,
Tulyani
,
S.
, and
Benziger
,
J. B.
, 2004, “
A Comparison of Physical Properties and Fuel Cell Performance of Nafion and Zir-Conium Phosphate/Nafion Composite Membranes
,”
J. Membr. Sci.
0376-7388,
237
, pp.
145
161
.
48.
Ju
,
H.
,
Wang
,
C. Y.
,
Cleghorn
,
S.
, and
Beuscher
,
U.
, 2005, “
Nonisothermal Modeling of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
A1645
-
A1653
.
49.
Hinatsu
,
J. T.
,
Mizuhata
,
M.
, and
Takenake
,
H.
, 1994, “
Water Uptake of Perfluorosulfonic Acid Membranes From Liquid Water and Water Vapor
,”
J. Electrochem. Soc.
0013-4651,
141
, pp.
1493
1498
.
50.
Khandelwal
,
M.
, and
Mench
,
M. M.
, 2006, “
Direct Measurement of Through-Plane Thermal Conductivity and Contact Resistance in Fuel Cell Materials
,”
J. Power Sources
0378-7753,
161
, pp.
1106
1115
.
51.
Pivovar
,
B. S.
,
Smyrl
,
W. H.
, and
Cussler
,
E. L.
, 2005, “
Electro-Osmosis in Nafion 117, Polystyrene Sulfonic Acid, and Polybenzimidazole
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
A53
A60
.
52.
Ye
,
X.
, and
Wang
,
C. Y.
, 2007, “
Measurement of Water Transport Properties Through Membrane-Electrode Assemblies, I. Membranes
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B676
B682
.
53.
Motupally
,
S.
,
Becker
,
A. J.
, and
Weidner
,
J. W.
, 2000, “
Diffusion of Water in Nafion 115 Membranes
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
3171
3177
.
54.
Ye
,
X.
, and
Douglas LeVan
,
M.
, 2003, “
Water Transport Properties of Nafion Membranes, Part I. Single-Tube Membrane Module for Air Drying
,” J
J. Membr. Sci.
0376-7388,
221
, pp.
147
161
.
55.
Tsushima
,
S.
,
Teranishi
,
K.
, and
Hirai
,
S.
, 2004, “
Magnetic Resonance Imaging of the Water Distribution Within a Polymer Electrolyte Membrane in Fuel Cells
,”
Electrochem. Solid-State Lett.
1099-0062,
7
, pp.
A269
-
A272
.
56.
Minard
,
K. R.
,
Viswanathan
,
V. V.
,
Majors
,
P. D.
,
Wang
,
L.
, and
Rieke
,
P. C.
, 2006, “
Magnetic Resonance Imaging (MRI) of PEM Dehydration and Gas Manifold Flooding During Continuous Fuel Cell Operation
,”
J. Power Sources
0378-7753,
161
, pp.
856
863
.
57.
Li
,
G.
, and
Pickup
,
P. G.
, 2004, “
Measurement of Single Electrode Potentials and Impedances in Hydrogen and Direct Methanol PEM Fuel Cells
,”
Electrochim. Acta
0013-4686,
49
, pp.
4119
4126
.
58.
Andreaus
,
B.
,
McEvoy
,
A. J.
, and
Scherer
,
G. G.
, 2002, “
Analysis of Performance Losses in Polymer Electrolyte Fuel Cells at High Current Densities by Impedance Spectroscopy
,”
Electrochim. Acta
0013-4686,
47
, pp.
2223
2229
.
59.
Freire
,
T. J. P.
, and
Gonzalez
,
E. R.
, 2001, “
Effect of Membrane Characteristics and Humidification Conditions on the Impedance Response of Polymer Electrolyte Fuel Cells
,”
J. Electroanal. Chem.
0022-0728,
503
, pp.
57
68
.
60.
Buchi
,
F. N.
, and
Scherer
,
G. G.
, 2001, “
Investigation of the Transversal Water Profile in Nafion Membranes in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
148
, pp.
A183
A188
.
61.
Voss
,
H. H.
,
Wilkinson
,
D. P.
,
Pickup
,
P. G.
,
Johnson
,
M. C.
, and
Basura
,
V.
, 1995, “
Anode Water Removal: A Water Management and Diagnostic Technique for Solid Polymer Fuel Cells
,”
Electrochim. Acta
0013-4686,
40
, pp.
321
328
.
62.
Yoshida
,
H.
, and
Miura
,
Y.
, 1992, “
Behavior of Water in Perfluorinated Ionomer Membranes Containing Various Monovalent Cations
,”
J. Membr. Sci.
0376-7388,
68
, pp.
1
10
.
63.
Siu
,
A.
,
Schmeisser
,
J.
, and
Holdcroft
,
S.
, 2006, “
Effect of Water on the Low Temperature Conductivity of Polymer Electrolytes
,”
J. Phys. Chem. B
1089-5647,
110
, pp.
6072
6080
.
64.
Thompson
,
E. L.
,
Capehart
,
T. W.
,
Fuller
,
T. J.
, and
Jorne
,
J.
, 2006, “
Investigation of Low Temperature Proton Transport in Nafion Using Direct Current Conductivity and Differential Scanning Calorimetry
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
A2351
A2362
.
65.
Wang
,
J.
, and
Shi
,
M.
, 2006, “
Study on Two-Phase Countercurrent Flow and Transport Phenomenon in PEM of a Direct Methanol Fuel Cell
,”
Sci. China, Ser. E: Technol. Sci.
1006-9321,
49
, pp.
102
114
.
66.
Yan
,
W.
,
Chen
,
F.
,
Wu
,
H.
,
Soong
,
C.
, and
Chu
,
H.
, 2004, “
Analysis of Thermal and Water Management With Temperature-Dependent Diffusion Effects in Membrane of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
129
, pp.
127
137
.
67.
Zhang
,
J.
,
Xie
,
Z.
,
Zhang
,
J.
,
Tang
,
Y.
,
Song
,
C.
,
Navessin
,
T.
,
Shi
,
Z.
,
Song
,
D.
,
Wang
,
H.
,
Wilkinson
,
D. P.
,
Liu
,
Z.-S.
, and
Holdcroft
,
S.
, 2006, “
High Temperature PEM Fuel Cells
,”
J. Power Sources
0378-7753,
160
, pp.
872
891
.
68.
Lobato
,
J.
,
Canizares
,
P.
,
Rodrigo
,
M. A.
, and
Linares
,
J. J.
, 2007, “
PBI-Based Polymer Electrolyte Membrane Fuel Cells Temperature Effects on Cell Performance and Catalyst Stability
,”
Electrochim. Acta
0013-4686,
52
, pp.
3910
3920
.
69.
Zhu
,
X.
,
Zhang
,
H.
,
Zhang
,
Y.
,
Liang
,
Y.
,
Wang
,
X.
, and
Yi
,
B.
, 2006, “
An Ultrathin Self-Humidifying Membranes for PEM Fuel Cell Application: Fabrication, Characterization, and Experimental Analysis
,”
J. Phys. Chem. B
1089-5647,
110
, pp.
14240
14248
.
70.
Watanabe
,
M.
,
Uchida
,
H.
,
Seki
,
Y.
,
Emori
,
M.
, and
Stonehart
,
P.
, 1996, “
Self-Humidifying Polymer Electrolyte Membranes for Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
143
, pp.
3847
3852
.
71.
Uchida
,
M.
,
Aoyama
,
Y.
,
Eda
,
N.
, and
Ohta
,
A.
, 1995, “
Investigation of the Microstructure in the Catalyst Layer and Effects of Both Perfluorosulfonate Ionomer and PTFE-Loaded Carbon on the Catalyst Layer of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
142
, pp.
4143
4149
.
72.
Ihonen
,
J.
,
Jaouen
,
F.
,
Lindbergh
,
G.
,
Lundblad
,
A.
, and
Sundholm
,
G.
, 2002, “
Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode
,”
J. Electrochem. Soc.
0013-4651,
149
, pp.
A448
A454
.
73.
Sun
,
W.
,
Peppley
,
B. A.
, and
Karan
,
K.
, 2005, “
An Improved Two-Dimensional Agglomerate Cathode Model to Study the Influence of Catalyst Layer Structural Parameters
,”
Electrochim. Acta
0013-4686,
50
, pp.
3359
3374
.
74.
Gloaguen
,
F.
, and
Durand
,
R.
, 1997, “
Simulations of PEFC Cathodes: An Effectiveness Factor Approach
,”
J. Appl. Electrochem.
0021-891X,
27
, pp.
1029
1035
.
75.
Eikerling
,
M.
, 2006, “
Water Management in Cathode Catalyst Layers of PEM Fuel Cells: A Structure-Based Model
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
E58
E70
.
76.
Wang
,
Q.
,
Song
,
D.
,
Navessin
,
T.
,
Holdcroft
,
S.
, and
Liu
,
Z.
, 2004, “
A Mathematical Model and Optimization of the Cathode Catalyst Layer Structure in PEM Fuel Cells
,”
Electrochim. Acta
0013-4686,
50
, pp.
725
730
.
77.
Yin
,
K. M.
, 2005, “
Parametric Study of Proton-Exchange-Membrane Fuel Cell Cathode Using an Agglomerate Model
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
A583
A593
.
78.
Berg
,
P.
,
Novruzi
,
A.
, and
Promislow
,
K.
, 2006, “
Analysis of a Cathode Catalyst Layer Model for a Polymer Electrolyte Fuel Cell
,”
Chem. Eng. Sci.
0009-2509,
61
, pp.
4316
4331
.
79.
Marr
,
C.
, and
Li
,
X.
, 1999, “
Composition and Performance Modeling of Catalyst Layer in a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
77
, pp.
17
27
.
80.
Ayad
,
A.
,
Naimi
,
Y.
,
Bouet
,
J.
, and
Fauvarque
,
J. F.
, 2004, “
Oxygen Reduction on Platinum Electrode Coated With Nafion
,”
J. Power Sources
0378-7753,
130
, pp.
50
55
.
81.
Pisani
,
L.
,
Valentinin
,
M.
, and
Murgia
,
G.
, 2003, “
Analytical Pore Scale Modeling of the Reactive Regions of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A1549
A1559
.
82.
Stumper
,
J.
,
Haas
,
H.
, and
Granados
,
A.
, 2005, “
In Situ Determination of MEA Resistance and Electrode Diffusivity of a Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
A837
A844
.
83.
Kaufman
,
M.
, 2002,
Principles of Thermodynamics
,
Marcel Dekker
,
New York
.
84.
Yu
,
H. M.
,
Ziegler
,
C.
,
Oszcipok
,
M.
,
Zobel
,
M.
, and
Hebling
,
C.
, 2006, “
Hydrophilicity and Hydrophobicity Study of Catalyst Layers in Proton Exchange Membrane Fuel Cells
,”
Electrochim. Acta
0013-4686,
51
, pp.
1199
1207
.
85.
Debe
,
M. K.
,
Schnoeckel
,
A. K.
,
Vernstrom
,
G. D.
, and
Atanasoski
,
R.
, 2006, “
High Voltage Stability of Nanostructured Thin Film Catalysts for PEM Fuel Cells
,”
J. Power Sources
0378-7753,
161
, pp.
1002
1011
.
86.
Wang
,
B.
, 2005, “
Recent Development of Non-Platinum Catalysts for Oxygen Reduction Reaction
,”
J. Power Sources
0378-7753,
152
, pp.
1
15
.
87.
Rodrigues
,
A.
,
Amphlett
,
J. C.
,
Mann
,
R. F.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
, 1997,
Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference
, p.
768
.
88.
Wilkinson
,
D. P.
, and
Thompsett
,
D.
, 1997,
Proceedings of the Second International Symposium on New Materials for Fuel-Cell and Modern Battery Systems
,
O.
Savadogo
and
P. R.
Roberge
, eds.,
Montreal, Canada
, p.
266
.
89.
Bhatia
,
K. K.
, and
Wang
,
C. Y.
, 2004, “
Transient Carbon Monoxide Poisoning of a Polymer Electrolyte Fuel Cell Operating on Diluted Hydrogen Feed
,”
Electrochim. Acta
0013-4686,
49
, pp.
2333
2341
.
90.
Qi
,
Z. G.
,
He
,
C. Z.
, and
Kaufman
,
A.
, 2002, “
Effect of CO in the Anode Fuel on the Performance of PEM Fuel Cell Cathode
,”
J. Power Sources
0378-7753,
111
, pp.
239
247
.
91.
Watanabe
,
M.
, and
Motoo
,
S.
, 1986, “
Chemisorbed CO on a Polycrystalline Platinum Electrode. the Effect of Conditioning of the Surface and of Partial Pressure of CO
,”
J. Electroanal. Chem.
0022-0728,
206
, pp.
197
208
.
92.
Igarashi
,
H.
,
Fujino
,
T.
, and
Watanabe
,
M.
, 1995, “
Hydrogen Electro-Oxidation on Platinum Catalysts in the Presence of Trace Carbon Monoxide
,”
J. Electroanal. Chem.
0022-0728,
391
, pp.
119
123
.
93.
Papageorgopoulos
,
D. C.
, and
de Brujin
,
F. A.
, 2002, “
Examing a Potential Fuel Cell Poison. a Voltammetry Study of the Influence of Carbon Dioxide on the Hydrogen Oxidation Capability of Carbon-Supported Pt and Ptru Anodes
,”
J. Electrochem. Soc.
0013-4651,
149
, pp.
A140
A145
.
94.
Springer
,
T. E.
,
Tockward
,
T.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 2001, “
Model for Polymer Electrolyte Fuel Cell Operation on Reformate Feed. Effects of CO, H2 Dilution, and High Fuel Utilization
,”
J. Electrochem. Soc.
0013-4651,
148
, pp.
A11
A23
.
95.
Baschuk
,
J. J.
,
Rowe
,
A. M.
, and
Li
,
X.
, 2003, “
Modeling and Simulation of PEM Fuel Cells with CO Poisoning
,”
ASME J. Energy Resour. Technol.
0195-0738,
125
, pp.
94
100
.
96.
Baschuk
,
J. J.
, and
Li
,
X.
, 2001, “
Carbon Monoxide Poisoning of Proton Exchange Membrane Fuel Cells
,”
Int. J. Energy Res.
0363-907X,
25
, pp.
695
713
.
97.
Cheng
,
X.
,
Shi
,
Z.
,
Glass
,
N.
,
Zhang
,
L.
,
Zhang
,
J.
,
Song
,
D.
,
Liu
,
Z.
,
Wang
,
H.
, and
Shen
,
J.
, 2007, “
A Review of PEM Hydrogen Fuel Cell Contamination: Impacts, Mechanisms, and Mitigation
,”
J. Power Sources
0378-7753,
165
, pp.
739
756
.
98.
Moretti
,
E.
,
Lenarda
,
M.
,
Storaro
,
L.
,
Talon
,
A.
,
Frattini
,
R.
,
Polizzi
,
S.
,
Rodriguez-Castellon
,
E.
, and
Jimenez-Lopez
,
A.
, 2007, “
Catalytic Purification of Hydrogen Streams by PROX on Cu Supported on an Organized Mesoporous Ceria-Modified Alumina
,”
Appl. Catal., B
0926-3373,
72
, pp.
149
156
.
99.
Batista
,
M. S.
,
Santiago
,
E. I.
,
Assaf
,
E. M.
, and
Ticianelli
,
E. A.
, 2005, “
Evaluation of the Water-Gas Shift and CO Methanation Process for Purification of Reformate Gases and the Coupling to a PEM Fuel Cell System
,”
J. Power Sources
0378-7753,
145
, pp.
50
54
.
100.
Ledjeff-Hey
,
K.
,
Rose
,
J.
, and
Wolters
,
R.
, 2000, “
CO2-Scrubbing and Methanation as Purification System for PEFC
,”
J. Power Sources
0378-7753,
86
, pp.
556
561
.
101.
Bellows
,
R. J.
,
Marucchi-Soos
,
E.
, and
Reynolds
,
R. P.
, 1998, “
Mechanism of CO Mitigation in Proton Exchange Membrane Fuel Cells Using Dilute H2O2 in the Anode Humidifier
,”
Electrochem. Solid-State Lett.
1099-0062,
1
, pp.
69
70
.
102.
Chung
,
C.-C.
,
Hsun
,
C.-C.
,
Hui
,
L.
, and
Yie
,
Y.
, 2005, “
Improvement of CO Tolerance of Proton Exchange Membrane Fuel Cell (PEMFC) by an Air-Bleeding Technique
,”
Proceedings of the Third International Conference on Fuel Cell Science, Engineering, and Technology
, pp.
215
221
.
103.
Adcock
,
P. A.
,
Pacheco
,
S. V.
,
Norman
,
K. M.
, and
Uribe
,
F. A.
, 2005, “
Transition Metal Oxides as Reconfigured Fuel Cell Anode Catalysts for Improved CO Tolerance: Polarization Data
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
A459
A466
.
104.
Gasteiger
,
H. A.
,
Markovic
,
N. M.
, Jr.
,
Ross
,
P. N.
, and
Cairns
,
E. J.
, 1994, “
CO Electrooxidation on Well-Characterized Pt-Ru Alloys
,”
J. Phys. Chem.
0022-3654,
98
, pp.
617
625
.
105.
Schmidt
,
T. J.
,
Gasteiger
,
H. A.
, and
Behm
,
R. J.
, 1999, “
Rotating Disk Electrode Measurements on the CO Tolerance of a High-Surface Area Pt/Vulcan Carbon Fuel Cell Catalyst
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
1296
1304
.
106.
Giorgi
,
L.
,
Pozio
,
A.
,
Bracchini
,
C.
,
Giorgi
,
R.
, and
Turt
,
S.
, 2001, “
H2 and H2/CO Oxidation Mechanism on Pt∕C, Ru∕C and Pt-Ru∕C Electrocatalysts
,”
J. Appl. Electrochem.
0021-891X,
31
, pp.
325
334
.
107.
Wakisake
,
M.
,
Mitsui
,
S.
,
Hirose
,
Y.
,
Kawashima
,
K.
,
Uchida
,
H.
, and
Watanabe
,
M.
, 2006, “
Electronic Structures of Pt-Co and Pt-Ru Alloys for CO-Tolerant Anode Catalysts in Polymer Electrolyte Fuel Cells Studied by EC-XPS
,”
J. Phys. Chem. B
1089-5647,
110
, pp.
23489
23496
.
108.
Ioroi
,
T.
,
Yasuda
,
K.
,
Siroma
,
Z.
,
Fujiwara
,
N.
, and
Miyazake
,
Y.
, 2003, “
Enhanced CO-Tolerance of Carbon-Supported Platinum and Molybdenum Oxide Anode Catalyst
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A1225
A1230
.
109.
Yang
,
C.
,
Costamagna
,
P.
,
Srinivasan
,
S.
,
Benziger
,
J.
, and
Bocarsly
,
A. B.
, 2001, “
Approaches and Technical Challenges to High Temperature Operation of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
103
, pp.
1
9
.
110.
Li
,
Q. F.
,
He
,
R. H.
,
Jensen
,
J. O.
, and
Bjerrum
,
N. J.
, 2003, “
The CO Poisoning Effect in Pemfcs Operational at Temperatures Up to 200 Oc
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A1599
A1605
.
111.
Pasaogullari
,
U.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2005, “
Two-Phase Transport in Polymer Electrolyte Fuel Cells With Bilayer Cathode Gas Diffusion Media
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
A1574
A1582
.
112.
Qi
,
Z.
, and
Kaufman
,
A.
, 2002, “
Improvement of Water Management by a Microporous Sublayer for PEM Fuel Cells
,”
J. Power Sources
0378-7753,
109
, pp.
38
46
.
113.
Jordan
,
L. R.
,
Skukla
,
A. K.
,
Behrsing
,
T.
,
Avery
,
N. R.
,
Muddle
,
B. C.
, and
Forsyth
,
M.
, 2000, “
Effect of Diffusion-Layer Morphology on the Performance of Polymer Electrolyte Fuel Cells Operating at Atmospheric Pressure
,”
J. Appl. Electrochem.
0021-891X,
30
, pp.
641
646
.
114.
Kong
,
C. S.
,
Kim
,
D. Y.
,
Lee
,
H. K.
,
Shul
,
Y. G.
, and
Lee
,
T. H.
, 2002, “
Influence of Pore-Size Distribution of Diffusion Layer on Mass-Transport Problems of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
108
, pp.
185
191
.
115.
Wang
,
X.
,
Zhang
,
J.
,
Xu
,
H.
,
Zhu
,
X.
,
Chen
,
J.
, and
Yi
,
B.
, 2006, “
A Bi-Funcational Micro-Porous Layer With Composite Carbon Black for PEM Fuel Cells
,”
J. Power Sources
0378-7753,
162
, pp.
474
479
.
116.
Owejan
,
J. P.
,
Owejan
,
J. E.
,
Tighe
,
T. W.
,
Gu
,
W.
, and
Mathias
,
M.
, 2007, “
Investigation of Fundamental Transport Mechanism of Product Water from Cathode Catalyst Layer in Pemfcs
,”
Proceedings of Fluids Engineering Division Summer Meeting 2007, Fifth Joint ASME/JSME Fluids Engineering Conference
,
San Diego, CA
, Jul. 30–Aug. 2.
117.
Udell
,
K. S.
, 1985, “
Heat Transfer in Porous Media Considering Phase Change and Capillarity—The Heat Pipe Effect
,”
Int. J. Heat Mass Transfer
0017-9310,
29
, pp.
485
495
.
118.
Nam
,
J. H.
, and
Kaviany
,
M.
, 2003, “
Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4595
4611
.
119.
Litster
,
S.
,
Sinton
,
D.
, and
Dijali
,
N.
, 2006, “
Ex Situ Visualization of Liquid Water Transport in PEM Fuel Cell Gas Diffusion Layers
,”
J. Power Sources
0378-7753,
154
, pp.
95
105
.
120.
Gostick
,
J. T.
,
Ioannidis
,
M. A.
,
Fowler
,
M. W.
, and
Pritzker
,
M. D.
, 2007, “
Pore Network Modeling of Fibrous Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
173
, pp.
277
290
.
121.
Sinha
,
P. K.
, and
Wang
,
C.-Y.
, 2008, “
Liquid Water Transport in a Mixed-Wet Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell
,”
Chem. Eng. Sci.
0009-2509,
63
, pp.
1081
1091
.
122.
Markicevic
,
B.
,
Bazylak
,
A.
, and
Djilali
,
N.
, 2007, “
Determination of Transport Parameters for Multiphase Flow in Porous Gas Diffusion Electrodes Using a Capillary Network Model
,”
J. Power Sources
0378-7753,
171
, pp.
706
717
.
123.
LaManna
,
J.
, and
Kandlikar
,
S. G.
, 2008, “
A Critical Review of Water Transport Models in Gas Diffusion Media of PEM Fuel Cell
,”
ASME Sixth International Conference on Nanochannels, Microchannels and Minichannels
,
Darmstadt, Germany
, Jun. 21–23, Paper No. ICNMM08-62201.
124.
Berning
,
T.
, and
Djilali
,
N.
, 2003, “
A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A1589
A1598
.
125.
Pharoah
,
J. G.
,
Karan
,
K.
, and
Sun
,
W.
, 2006, “
On Effective Transport Coefficients in PEM Fuel Cell Electrodes: Anisotropy of the Porous Transport Layer
,”
J. Power Sources
0378-7753,
161
, pp.
214
224
.
126.
Pasaogullari
,
U.
,
Mukherjee
,
P. P.
,
Wang
,
C.-Y.
, and
Chen
,
K. S.
, 2007, “
Anisotropic Heat and Water Transport in a PEFC Cathode Gas Diffusion Layer
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B823
B834
.
127.
Hwang
,
J. J.
, 2007, “
A Complete Two-Phase Model of a Porous Cathode of a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
164
, pp.
174
181
.
128.
Tawfik
,
H.
,
Hung
,
Y.
, and
Mahajan
,
D.
, 2007, “
Metal Bipolar Plates for PEM Fuel Cell—A Review
,”
J. Power Sources
0378-7753,
163
, pp.
755
767
.
129.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
West Sussex, England
.
130.
Ashley
,
S.
, 2006, “
Fuel Cells Start to Look Real
,” Automotive Engineering International Online, SAE International.
131.
News
, 2006, “
Ballard Introduces Latest Air-Cooled Stack
,”
Fuel Cells Bull.
1464-2859,
2006
(
11
), p.
8
.
132.
Abd Elhamid
,
M.
,
Mikhail
,
Y. M.
,
Blunk
,
R. H.
, and
Lisi
,
D. J.
, 2004, “
Inexpensive Dielectric Coolant for Fuel Cell Stacks
,” U.S. Patent No. 6,740,440.
133.
Imaseki
,
M.
,
Ushio
,
T.
, and
Shimoyama
,
Y.
, 2006, “
Cooling Method for Fuel Cell
,” U.S. Patent No. 7,070,873.
134.
Maes
,
J.-P.
, and
Lievens
,
S.
, 2007, “
Methods for Fuel Cell Coolant Systems
,” U.S. Patent No. 7,201,982.
135.
Matsuzaki
,
T.
, 2007, “
Cooling System for Fuel Cell and Prevention Method for Degradation of Coolant Therefor
,” U.S. Patent No. 7,160,468.
136.
Lee
,
J. H.
, and
Skala
,
G. W.
, 2005, “
Cooling System for Fuel Cell Stack
,” U.S. Patent No. 6,866,955.
137.
Yoshii
,
K.
, and
Takeda
,
Y.
, 2006, “
Cooling Apparatus for Fuel Cell Utilizing Air Conditioning System
,” U.S. Patent No. 7,086,246.
138.
Brambilla
,
M.
, and
Mazzucchelli
,
G.
, 2004, “
Fuel Cell with Cooling System Based on Direct Injection of Liquid Water
,” U.S. Patent No. 6,835,477.
139.
Goebel
,
S. G.
, 2005, “
Evaporative Cooled Fuel Cell
,” U.S. Patent No. 6,960,404.
140.
Meyers
,
J. P.
,
Darling
,
R. M.
,
Evans
,
C.
,
Balliet
,
R.
, and
Perry
,
M. L.
, 2006, “
Evaporatively-Cooled PEM Fuel-Cell Stack and System
,”
ECS Trans.
,
3
, pp.
1207
1214
.
141.
Reiser
,
C. A.
,
Meyers
,
J. P.
,
Johnson
,
D. D.
,
Evans
,
C. E.
, and
Darling
,
R. M.
, 2006, “
Fuel Cells Evaporatively Cooled With Water Carried in Passageways
,” U.S. Patent Application No. US2006/0141330, pending.
142.
Depart of Energy
, 2007, DOE Multi-Year Research, Development and Demonstration Plan, Technical Plan-Fuel Cells, DOE, Apr. 27.
143.
Yan
,
Q.
,
Toghiani
,
H.
,
Lee
,
Y.-W.
,
Liang
,
K.
, and
Causey
,
H.
, 2006, “
Effect of Sub-Freezing Temperatures on a PEM Fuel Cell Performance, Startup and Fuel Cell Components
,”
J. Power Sources
0378-7753,
160
, pp.
1242
1250
.
144.
Pelaez
,
J. A.
,
Schneider
,
N. M.
, and
Kandlikar
,
S. G.
, 2008, “
Effect of Cycling on GDL in Freezing and Non-Freezing Conditions
,”
Proceedings of the Sixth International Conference on Nanochannels, Microchannels and Minichannels
,
ASME
,
Darmstadt, Germany
, Jun. 21–23, Paper No. ICNMM2008-62197.
145.
Hou
,
J.
,
Song
,
W.
,
Yu
,
H.
,
Fu
,
Y.
,
Shao
,
Z.
, and
Yi
,
B.
, 2007, “
Electrochemical Impedance Investigation of Proton Exchange Membrane Fuel Cells Experienced Subzero Temperature
,”
J. Power Sources
0378-7753,
171
, pp.
610
616
.
146.
Hou
,
J.
,
Yi
,
B.
,
Yu
,
H.
,
Hao
,
L.
,
Song
,
W.
,
Fu
,
Y.
, and
Shao
,
Z.
, 2007, “
Investigation of Resided Water Effects on PEM Fuel Cell After Cold Start
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
4503
4509
.
147.
Ge
,
S.
, and
Wang
,
C.-Y.
, 2007, “
Characteristics of Subzero Startup and Water/Ice Formation on the Catalyst Layer in a Polymer Electrolyte Fuel Cell
,”
Electrochim. Acta
0013-4686,
52
, pp.
4825
4835
.
148.
Ge
,
S.
, and Wang, C.-Y., 2007, “
Cyclic Voltammetry Study of Ice Formation in the PEFC Catalyst Layer During Cold Start
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B1399
B1406
.
149.
Ge
,
S.
, and
Wang
,
C.-Y.
, 2006, “
In Situ Imaging of Liquid Water and Ice Formation in an Operating PEFC During Cold Start
,”
Electrochem. Solid-State Lett.
1099-0062,
9
, pp.
A499
A503
.
150.
Cho
,
E.
,
Ko
,
J.-J.
,
Ha
,
H. Y.
,
Hong
,
S.-A.
,
Lee
,
K.-Y.
,
Lim
,
T.-W.
, and
Oh
,
I.-H.
, 2004, “
Effects of Water Removal on the Performance Degradation of PEMFCs Repetitively Brought to <0°C
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A661
A665
.
151.
Hishinuma
,
Y.
,
Chikahisa
,
T.
,
Kagami
,
F.
, and
Ogawa
,
T.
, 2004, “
The Design and Performance of a PEFC at a Temperature Below Freezing
,”
JSME Int. J., Ser. B
1340-8054,
47
, pp.
235
241
.
152.
Hottinen
,
T.
,
Himanen
,
O.
, and
Lund
,
P.
, 2006, “
Performance of Planar Free-Breathing PEMFC at Temperatures Below Freezing
,”
J. Power Sources
0378-7753,
154
, pp.
86
94
.
153.
Jiang
,
F.
,
Fang
,
W.
, and
Wang
,
C.-Y.
, 2007, “
Non-Isothermal Cold Start of Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
53
, pp.
610
621
.
154.
Mao
,
L.
,
Wang
,
C.-Y.
, and
Tabuchi
,
Y.
, 2007, “
A Multiphase Model for Cold Start of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B341
B351
.
155.
Meng
,
H.
, 2008, “
A PEM Fuel Cell Model for Cold-Start Simulations
,”
J. Power Sources
0378-7753,
178
, pp.
141
150
.
156.
Khandelwal
,
M.
,
Lee
,
S.
, and
Mench
,
M. M.
, 2007, “
One-Dimensional Thermal Model of Cold-Start in a Polymer Electrolyte Fuel Cell Stack
,”
J. Power Sources
0378-7753,
172
, pp.
816
830
.
157.
Sinha
,
P. K.
, and
Wang
,
C.-Y.
, 2007, “
Gas Purge in a Polymer Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B1158
B1166
.
158.
Tajiri
,
K.
,
Tabuchi
,
Y.
, and
Wang
,
C.-Y.
, 2007, “
Isothermal Cold Start of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B147
B152
.
You do not currently have access to this content.