A dynamic model of a stationary proton exchange membrane (PEM) fuel cell system has been developed in MATLAB-SIMULINK®. The system model accounts for the fuel processing system, PEM stack with coolant, humidifier with anode tail-gas oxidizer, and an enthalpy wheel for cathode air. Four reactors are modeled for the fuel processing system: (1) an autothermal reformation (ATR) reactor, (2) a high temperature shift (HTS) reactor, (3) a low temperature shift (LTS) reactor, and (4) a preferential oxidation reactor. Chemical kinetics for ATR that describe steam reformation of methane and partial oxidation of methane were simultaneously solved to accurately predict the reaction dynamics. The chemical equilibrium of CO with H2O was assumed at HTS and LTS reactor exits to calculate CO conversion corresponding to the temperature of each reactor. A quasi-one-dimensional PEM unit cell was modeled with five control volumes for solving the dynamic species and mass conservation equations and seven control volumes to solve the dynamic energy balance. The quasi-one-dimensional cell model is able to capture the details of membrane electrode assembly behavior, such as water transport, which is critical to accurately determine polarization losses. The dynamic conservation equations, primary heat transfer equations and equations of state are solved in each bulk component, and each component is linked together to represent the complete system. The model predictions well matched the observed experimental dynamic voltage, stack coolant outlet temperature, and catalytic partial oxidation (CPO) temperature responses to perturbations. The dynamic response characteristics of the current system are representative of a typical stationary PEM fuel cell system. The dynamic model is used to develop and test a proportional-integral (PI) fuel flow controller that determines the fuel flow rate to maintain the uniform system efficiency. The dynamic model is shown to be a useful tool for investigating the effects of inlet conditions, load, and fuel flow perturbations and for the development of control strategies for enhancing system performance.

1.
Srinivasan
,
S.
,
Manko
,
D. J.
,
Koch
,
H.
,
Enayetullah
,
M. A.
, and
Appleby
,
J. A.
, 1990, “
Recent Advances in Solid Polymer Electrolyte Fuel Cell Technology With Low Platinum Loading Electrodes
,”
J. Power Sources
0378-7753,
29
, pp.
367
387
.
2.
Ghenciu
,
A. F.
, 2002, “
Review of Fuel Processing Catalysts for Hydrogen Production in PEM Fuel Cell Systems
,”
Curr. Opin. Solid State Mater. Sci.
1359-0286,
6
, pp.
389
399
.
3.
Mehta
,
V.
, and
Cooper
,
J. S.
, 2003, “
Review and Analysis of PEM Fuel Cell Design and Manufacturing
,”
J. Power Sources
0378-7753,
114
, pp.
32
53
.
4.
Costamagna
,
P.
, and
Srinivasan
,
S.
, 2001, “
Quantum Jumps in the PEMFC Science and Technology From the 1960s to the Year 2000: Part II. Engineering, Technology Development and Application Aspects
,”
J. Power Sources
0378-7753,
102
, pp.
242
252
.
5.
Gigliucci
,
G.
,
Petruzzi
,
L.
,
Cerelli
,
E.
,
Garzisi
,
A.
,
La Mendola
,
A.
, 2004, “
Demonstration of a Residential CHP System Based on PEM Fuel Cells
,”
J. Power Sources
0378-7753,
131
, pp.
62
68
.
6.
Boettner
,
D.
,
Massie
,
C.
, and
Massie
,
D.
, 2004, “
Lessons Learned From Residential Experience With Proton Exchange Membrane Fuel Cell Systems for Combined Heat and Power
,”
Proceedings of the ASME Fuel Cell Science, Engineering, and Technology Conference
, pp.
267
272
.
7.
Laosiripojana
,
N.
,
Sangtongkitcharoen
,
W.
, and
Assabumrungrat
,
S.
, 2006, “
Catalytic Steam Reforming of Ethane and Propane Over CeO2-Doped Ni∕Al2O3 at SOFC Temperature: Improvement of Resistance Toward Carbon Formation by the Redox Property of Doping CeO2
,”
Fuel
0016-2361,
85
, pp.
323
332
.
8.
Barrio
,
V. L.
,
Schaub
,
G.
,
Rohde
,
M.
,
Rabe
,
S.
,
Vogel
,
F.
,
Cambra
,
J. F.
,
Arias
,
P. L.
, and
Guemez
,
M. B.
, 2007, “
Reactor Modeling to Simulate Catalytic Partial Oxidation and Steam Reforming Of Methane. Comparison of Temperature Profiles and Strategies for Hot Spot Minimization
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
1421
1428
.
9.
Horng
,
R.-F.
,
Chou
,
H.-M.
,
Lee
,
C.-H.
, and
Tsai
,
H.-T.
, 2006, “
Characteristics of Hydrogen Produced by Partial Oxidation and Auto-Thermal Reforming in a Small Methanol Reformer
,”
J. Power Sources
0378-7753,
161
, pp.
1225
1233
.
10.
Yan
,
X.
,
Wang
,
S.
,
Li
,
X.
,
Hou
,
M.
,
Yuan
,
Z.
,
Li
,
D.
,
Pan
,
L.
,
Zhang
,
C.
,
Liu
,
J.
,
Ming
,
P.
, and
Yi
,
B.
, 2006, “
A 75-kW Methanol Reforming Fuel Cell System
,”
J. Power Sources
0378-7753,
162
, pp.
1265
1269
.
11.
Zhu
,
J.
,
Zhang
,
D.
, and
King
,
K. D.
, 2001, “
Reforming of CH4 by Partial Oxidation: Thermodynamic and Kinetic Analyses
,”
Fuel
0016-2361,
80
, pp.
899
905
.
12.
Yuan
,
L.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
, 2004, “
Dynamic Simulation of an Autothermal Methane Reformer
,” Second International Conference on Fuel Cell Science, Engineering and Technology, June, ASME Paper No. FuelCell2004–2518.
13.
Leem
,
S.
, and
Bae
,
J.
, 2005, “
Autothermal Reforming of Natural Gas for High-Temperature Fuel Cells
,”
Third International Conference on Fuel Cell Science, Engineering and Technology
, Ypsilanti, MI.
14.
Shan
,
Y.
, and
Choe
,
S.
, 2005, “
Computation of Dehydration Effects of the Membrane in a PEM Fuel Cell
,”
Third International Conference on Fuel Cell Science, Engineering and Technology
, Ypsilanti, Michigan.
15.
Yuyao
,
S.
, and
Choe
,
S.-Y.
, 2005,
Proceedings of the Third International Conference on Fuel Cell Science, Engineering and Technology
, Paper No. ASME FC2005–74163.
16.
Yerramalla
,
S.
,
Davari
,
A.
,
Feliachi
,
A.
, and
Biswas
,
T.
, 2003, “
Modeling and Simulation of the Dynamic Behavior of a Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
124
, pp.
104
113
.
17.
Pukrushpan
,
T. J.
,
Stefanopoulou
,
G. A.
, and
Peng
,
H.
, 2004,
Control of Fuel Cell Power Systems Principles, Modeling, Analysis and Feedback Design
, Springer, New York.
18.
Xue
,
X.
,
Tang
,
J.
,
Smirnova
,
A.
,
England
,
R.
, and
Sammes
,
N.
, 2004, “
System Level Lumped-Parameter Dynamic Modeling of PEM Fuel Cell
,”
J. Power Sources
0378-7753,
133
(
2
), pp.
188
204
.
19.
Ceraolo
,
M.
,
Miulli
,
C.
, and
Pozio
,
A.
, 2003, “
Modelling Static and Dynamic Behaviour of Proton Exchange Membrane Fuel Cells on the Basis of Electro-Chemical Description
,”
J. Power Sources
0378-7753,
113
, pp.
131
144
.
20.
Wang
,
Y.
, and
Wang
,
C.
, 2005, “
Transient Analysis of Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
50
, pp.
1307
1315
.
21.
Um
,
S.
, and
Wang
,
C. Y.
, 2004, “
Three-Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells
J. Power Sources
0378-7753,
125
, pp.
40
50
.
22.
Hu
,
G.
,
Fan
,
J.
,
Chen
,
S.
,
Liu
,
Y.
, and
Cen
,
K.
, 2004, “
Three-Dimensional Numerical Analysis of Proton Exchange Membrane Fuel Cells (PEMFCs) With Conventional and Interdigitated Flow Fields
,”
J. Power Sources
0378-7753,
136
, pp.
1
9
.
23.
Meng
,
H.
, 2007, “
A Three-Dimensional Mixed-Domain PEM Fuel Cell Model With Fully-Coupled Transport Phenomena
,”
J. Power Sources
0378-7753,
164
, pp.
688
696
.
24.
Maher
,
A. R.
,
Sadiq
,
A.-B.
,
Haroun
,
A. K.
, and
Shahad
,
A.-J.
, 2007, “
Parametric and Optimization Study of a PEM Fuel Cell Performance Using Three-Dimensional Computational Fluid Dynamics Model
,”
Renewable Energy
0960-1481,
32
, pp.
1077
1101
.
25.
Wang
,
Y.
, and
Wang
,
C.
, 2006, “
Dynamics of Polymer Electrolyte Fuel Cells Undergoing Load Changes
,”
Electrochim. Acta
0013-4686,
51
, pp.
3924
3933
.
26.
Mueller
,
F.
,
Brouwer
,
J.
,
Kang
,
S.
,
Kim
,
H-S.
, and
Min
,
K.
, 2007, “
Quasi-Three Dimensional Dynamic Model of a Proton Exchange Membrane Fuel Cell for System and Controls Development
,”
J. Power Sources
0378-7753,
163
, pp.
814
829
.
27.
Wang
,
Y.
, and
Wang
,
C.
, 2007, “
Two-Phase Transients of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B636
B643
.
28.
Barrio
,
V. L.
,
Schaub
,
G.
,
Rohde
,
M.
,
Rabe
,
S.
,
Vogel
,
F.
,
Cambra
,
J. F.
,
Arias
,
P. L.
, and
Guemez
,
M. B.
, 2007, “
Reactor Modeling to Simulate Catalytic Partial Oxidation and Steam Reforming of Methane. Comparison of Temperature Profiles and Strategies for Hot Spot Minimization
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
1421
1428
.
29.
Power
,
Plug
, GenSys™ Fuel Cell System service manual, SM005.
30.
Freunberger
,
S. A.
,
Santis
,
M.
,
Schneider
,
I. A.
,
Alexander
,
W.
, and
Buchi
,
F. N.
, 2006, “
In-Plane Effects in Large-Scale PEMFCs
,”
J. Electrochem. Soc.
0013-4651,
153
(
2
), pp.
A396
A405
.
31.
Burt
,
A. C.
,
Celik
,
I. B.
,
Gemmen
,
R. S.
, and
Smirnov
,
A. V.
, 2004, “
A Numerical Study Cell-to-Cell Variations in a SOFC Stack
,”
J. Power Sources
0378-7753,
126
, pp.
76
87
.
32.
Campanari
,
S.
, and
Iora
,
P.
, 2004, “
Definition and Sensivity of a Finite Volume SOFC Model for a Tubular Cell Geometry
,”
J. Power Sources
0378-7753,
132
, pp.
113
126
.
33.
Andrew
,
M. R.
, 1966,
An Introduction to Fuel Cells
,
K. R.
Williams
, ed.,
Elsevier
,
New York
.
34.
Xu
,
J.
, and
Froment
,
G. F.
, 1989, “
Methane Steam Reforming, Methanation and Water-Gas Shift: I. Intrinsic Kinetics
,”
AIChE J.
0001-1541,
35
, pp.
88
96
.
35.
Jin
,
W.
,
Gu
,
X.
,
Li
,
S.
,
Huang
,
P.
,
Xu
,
N.
, and
Shi
,
J.
, 2000, “
Experimental and Simulation Study on a Catalyst Packed Tubular Dense Membrane Reactor for Partial Oxidation of Methane to Syngas
,”
Chem. Eng. Sci.
0009-2509,
55
, pp.
2617
2625
.
36.
Bird
,
R.
,
Stewart
,
W.
, and
Lightfoot
,
E.
, 1960,
Transport Phenomena
,
Wiley
,
New York
.
37.
Springer
,
T.
,
Zawodzinski
,
T.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
136
, pp.
2334
2342
.
38.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
New York
.
You do not currently have access to this content.