The goal of this work is to investigate the feasibility of a hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) system for mobile power production. A system consisting of a gas turbine, a burner, and an SOFC is examined to gain fundamental understanding of the system dynamics. A control oriented dynamic model is developed to provide the critically needed tool for system feasibility analysis and control strategy design. System optimization and transient analysis are performed based on the system model to determine the desired operating conditions and load following limitations. It is shown that the open loop system will shut down in the case of a large load step. Based on the insights learned from the open loop analysis, a feedback control scheme is proposed. The feedback scheme is based on a reference governor, which modifies the load applied to the generator to guarantee stability and fast tracking during transients.

1.
Xi
,
H.
, 2007, “
Dynamic Modeling and Control of Planar SOFC Power Systems
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
2.
Tsourapas
,
V.
,
Sun
,
J.
, and
Stefanopoulou
,
A.
, 2004, “
Modeling and Dynamics of a Fuel Cell Combined Heat Power System for Marine Applications
,”
IASME Transactions
,
2
(
1
), pp.
287
293
.
3.
Tsourapas
,
V.
,
Stefanopoulou
,
A.
, and
Sun
,
J.
, 2007, “
Model-Based Control of an Integrated Fuel Cell and Fuel Processor With Exhaust Heat Recirculation
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
, pp.
233
245
.
4.
Lundberg
,
W. L.
,
Veyo
,
S. E.
, and
Moeckel
,
M. D.
, 2003, “
A high-Efficiency Solid Oxide Fuel Cell Hybrid Power System Using the Mercury 50 Advanced Turbine Systems Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
51
57
.
5.
Kuchonthara
,
P.
,
Bhattacharya
,
S.
, and
Tsutsumi
,
A.
, 2003, “
Energy Recuperation in Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Combined System
,”
J. Power Sources
,
117
, pp.
7
13
. 0378-7753
6.
Kimijima
,
S.
, and
Kasagi
,
N.
, 2005, “
Cycle Analysis of Micro Gas Turbine Molten Carbonate Fuel Cell Hybrid System
,”
JSME Int. J., Ser. B
1340-8054,
48
, pp.
65
74
.
7.
Silveira
,
J.
, and
Gomes
,
L.
, 1999, “
Fuel Cell Cogeneration System: A Case of Technoeconomic Analysis
,”
Renewable Sustainable Energy Rev.
1364-0321,
3
, pp.
233
242
.
8.
Yi
,
Y.
,
Rao
,
A. D.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
, 2004, “
Analysis and Optimization of a Solid Oxide Fuel Cell and Intercooled Gas Turbine (SOFC-ICGT) Hybrid Cycle
,”
J. Power Sources
0378-7753,
132
, pp.
77
85
.
9.
Yang
,
W.
,
Park
,
S.
,
Kim
,
T.
,
Kim
,
J.
,
Sohn
,
J.
, and
Ro
,
S.
, 2006, “
Design Performance Analysis of Pressurized Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems Considering Temperature Constraints
,”
J. Power Sources
,
160
, pp.
462
473
. 0378-7753
10.
Massardo
,
A. F.
, and
Lubelli
,
F.
, 2000, “
Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT): Part A—Cell Model and Cycle Thermodynamic Analysis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
, pp.
27
35
.
11.
Uechi
,
H.
,
Kimijima
,
S.
, and
Kasagi
,
N.
, 2004, “
Cycle Analysis of Gas Turbine-Fuel Cell Cycle Hybrid Micro Generation System
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
755
762
.
12.
Palsson
,
J.
,
Selimovic
,
A.
, and
Sjunnesson
,
L.
, 2000, “
Combined Solid Oxide Fuel Cell and Gas Turbine Systems for Efficient Power and Heat Generation
,”
J. Power Sources
0378-7753,
86
, pp.
442
448
.
13.
Song
,
T. W.
,
Sohna
,
J. L.
,
Kim
,
T. S.
, and
Ro
,
S. T.
, 2006, “
Performance Characteristics of a MW-Class SOFC/GT Hybrid System Based on a Commercially Available Gas Turbine
,”
J. Power Sources
,
158
, pp.
361
367
. 0378-7753
14.
Chung
,
T. -D.
,
Chyou
,
Y. -P.
,
Hong
,
W. -T.
,
Cheng
,
Y. -N.
, and
Lin
,
K. -F.
, 2007, “
Influence of Energy Recuperation on the Efficiency of a Solid Oxide Fuel Cell Power System
,”
Energy Fuels
,
21
, pp.
314
321
. 0887-0624
15.
Lokurlu
,
A.
,
Grube
,
T.
,
Hohlein
,
B.
, and
Stolten
,
D.
, 2003, “
Fuel Cells for Mobile and Stationary Applications—Cost Analysis for Combined Heat and Power Stations on the Basis of Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
28
, pp.
703
711
.
16.
Au
,
S. F.
,
McPhail
,
S. J.
,
Woudstra
,
N.
, and
Hemmes
,
K.
, 2003, “
The Influence of Operating Temperature on the Efficiency of a Combined Heat and Power Fuel Cell Plant
,”
J. Power Sources
0378-7753,
122
, pp.
37
46
.
17.
Murshed
,
A. M.
,
Huang
,
B.
, and
Nandakumar
,
K.
, 2007, “
Control Relevant Modeling of Planer Solid Oxide Fuel Cell System
,”
J. Power Sources
,
163
, pp.
830
845
. 0378-7753
18.
Wang
,
X.
,
Huang
,
B.
, and
Chen
,
T.
, 2007, “
Data-Driven Predictive Control for Solid Oxide Fuel Cells
,”
J. Process Control
,
17
, pp.
103
114
. 0959-1524
19.
Roberts
,
R. A.
, and
Brouwer
,
J.
, 2006, “
Dynamic Simulation of a Pressurized 220 kW Solid Oxide Fuel-Cell Gas-Turbine Hybrid System: Modeled Performance Compared to Measured Results
,”
J. Power Sources
,
3
, pp.
18
25
. 0378-7753
20.
Wächter
,
C.
,
Lunderstädt
,
R.
, and
Joos
,
F.
, 2006, “
Dynamic Model of a Pressurized SOFC/Gas Turbine Hybrid Power Plant for the Development of Control Concepts
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
271
279
.
21.
Stiller
,
C.
,
Thorud
,
B.
, and
Bolland
,
O.
, 2006, “
Safe Dynamic Operation of a Simple SOFC/GT Hybrid System
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
, pp.
551
559
.
22.
Stiller
,
C.
,
Thorud
,
B.
,
Bolland
,
O.
,
Kandepu
,
R.
, and
Imsland
,
L.
, 2006, “
Control Strategy for a Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
J. Power Sources
0378-7753,
158
, pp.
303
315
.
23.
Tsourapas
,
V.
, 2007, “
Control Analysis of Integrated Fuel Cell Systems With Energy Recuperation Devices
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
24.
Sun
,
J.
, and
Kolmanovsky
,
I.
, 2005, “
A Robust Load Governor for Fuel Cell Oxygen Starvation Protection
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
13
, pp.
911
920
.
25.
Khalil
,
H.
, 2002,
Nonlinear Systems
,
3rd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.