This paper introduces a fuel cell system model based on energetic macroscopic representation (EMR). EMR is a causal graphic modeling approach to describe complex multidomain systems, which facilitates inversion-based control structure development called maximum control structure (MCS). The EMR model is derived for a commercially available fuel cell system and corresponds well with experimental results. An inversion-based control is proposed for the air supply subsystem. The control corresponds well with the unknown internal control. The application of EMR and MCS marks a promising approach: Control structure development based on experience is replaced by a systematic approach. This is especially meaningful for complex multidomain systems such as fuel cell systems.

1.
Haraldsson
,
K.
, and
Wipke
,
K.
, 2004, “
Evaluating PEM Fuel Cell System Models
,”
J. Power Sources
,
126
, pp.
88
97
. 0378-7753
2.
Cheddie
,
D.
, and
Munroe
,
N.
, 2005, “
Review and Comparison of Approaches to Proton Exchange Membrane Fuel Cell Modeling
,”
J. Power Sources
,
147
, pp.
72
84
. 0378-7753
3.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2342
.
4.
Mueller
,
E. A.
, and
Stefanopoulou
,
A. G.
, 2005, “
Analysis, Modeling and Validation for the Thermal Dynamics of a Polymer Electrolyte Membrane Fuel Cell System
,”
Proceedings of the Third International Conference on Fuel Cell Science, Engineering and Technology
,
Ypsilanti, MI
, May 23–25, p.
16
.
5.
Yu
,
D.
, and
Yuvarajan
,
S.
, 2005, “
Electronic Circuit Model for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
142
, pp.
238
242
.
6.
Ou
,
S.
, and
Achenic
,
L. E. K.
, 2005, “
Artificial Neural Network Modeling of Pem Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
, pp.
226
233
.
7.
Jemei
,
S.
,
Hissel
,
D.
,
Pera
,
M.-C.
, and
Kauffmann
,
J.-M.
, 2003, “
On Board Fuel Cell Power Supply Modeling Thanks to Neural Network Methodology
,”
J. Power Sources
0378-7753,
124
(
2
), pp.
479
486
.
8.
Wahdame
,
B.
,
Candusso
,
D.
,
François
,
X.
,
Harel
,
F.
,
Péra
,
M. C.
,
Hissel
,
D.
, and
Kauffmann
,
J. M.
, 2006, “
Analysis of a Fuel Cell Durability Test Using the Response Surface Methodology
,”
Proceedings of the IEEE International Symposium on Industrial Electronics
, Montreal, Canada, July 9–12,
IEEE
,
New York
, pp.
2007
2012
.
9.
Hernandez
,
A.
,
Hissel
,
D.
, and
Outbib
,
R.
, 2006, “
Fuel Cell Fault Diagnosis: A Stochastic Approach
,”
Proceedings of the IEEE International Symposium on Industrial Electronics
,
IEEE
,
New York
, pp.
1984
1989
.
10.
Saisset
,
R.
,
Fontes
,
G.
,
Turpin
,
C.
, and
Astier
,
S.
, 2006, “
Bond Graph Model of a PEM Fuel Cell
,”
J. Power Sources
,
156
, pp.
100
107
. 0378-7753
11.
Delarue
,
Ph.
,
Bouscayrol
,
A.
,
Tounzi
,
A.
,
Guillard
,
X.
, and
Lancigu
,
G.
, 2003, “
Modelling, Control and Simulation of an Overall Wind Energy Conversion System
,”
Renewable Energy
0960-1481,
28
, pp.
1169
1185
.
12.
Lhomme
,
W.
,
Delarue
,
P.
,
Barrade
,
P.
, and
Bouscayrol
,
A.
, 2005, “
Maximum Control Structure of a Series Hybrid Electric Vehicle Using Supercapacitors
,”
Proceedings of the EVS21
,
Monaco
, April 2–6.
13.
Verhille
,
J. N.
,
Bouscayrol
,
A.
,
Barre
,
P. J.
,
Mercieca
,
J. C.
,
Hautier
,
J. P.
, and
Semail
,
E.
, 2004, “
Torque Tracking Strategy for Anti-Slip Control in Railway Traction Systems With Common Supplies
,”
Proceedings of the IEEE-IAS’04 Annual Meeting
, Vol.
4
,
Seatle
,
IEEE
,
New York
, pp.
2738
2745
.
14.
Sicard
,
P.
, and
Bouscayrol
,
A.
, 2006, “
Extension of Energetic Macroscopic Representation to Time Varying Systems
,”
Proceedings of the IEEE International Symposium on Industrial Electronics
,
Sicard, Montreal
, July 9–13, pp.
1370
1375
.
15.
Bouscayrol
,
A.
,
Schoenfeld
,
R.
,
Dauphin-Tangy
,
G.
,
Geitner
,
G.-H.
,
Guilland
,
X.
,
Pennamen
,
A.
, and
Hautier
,
J.-P.
, 2005 “
Different Energetic Descriptions for Electromechanical Systems
,”
Proceedings of the European Conference on Power Electronics and Applications
,
Bouscayrol, Dresden, Germany
, Sept. 12–14.
16.
Chrenko
,
D.
,
Pera
,
M.-C.
,
Hissel
,
D.
, and
Geweke
,
M.
, 2008, “
Macroscopic Modeling of a PEFC System Based on Equivalent Circuits of Fuel and Oxidant Supplying
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
5
(
1
), p.
011015
.
17.
Zhang
,
Z.
,
Huang
,
X.
,
Jiang
,
H.
, and
Wu
,
B.
, 2006, “
An Improved Dynamic Model Considering Effects of Temperature and Equivalent Internal Resistance for PEM Fuel Cell Power Modules
,”
J. Power Sources
0378-7753,
161
(
2
), pp.
1062
1068
.
18.
Zhu
,
W.
,
Payne
,
R.
, and
Tararchuk
,
B.
, 2006, “
Critical Flow Rate of Anode Fuel Exhaust in a PEM Fuel Cell System
,”
J. Power Sources
0378-7753,
156
, pp.
512
519
.
19.
Laurencelle
,
F.
,
Chahine
,
R.
,
Hamelin
,
J.
,
Agbossou
,
K.
,
Fournier
,
M.
,
Bose
,
T. K.
, and
Laperriere
,
A.
, 2001, “
Characterization of a Ballard MK5-E Proton Exchange Membrane Fuel Cell Stack
,”
Fuel Cells
,
1
, pp.
66
71
. 1615-6846
You do not currently have access to this content.