Real-time (RT) modeling is a recognized approach to monitor advanced systems and to improve control capabilities. Applications of RT models are commonly used in the automotive and aerospace fields. Starting from existing components and models developed in TRANSEO[REF], a new approach, called the multipurpose RT approach, is developed for the solid oxide fuel cell hybrid system application. Original C-based models have been reprogrammed into embedded MATLAB functions for direct use within MATLAB-SIMULINK. Also, models in TRANSEO have been simplified to improve execution time. Using MATLAB’s Real-Time Workshop application, the system model is able to be translated into an autogenerated C-code, and run as an application specific RT executable.

1.
Traverso
,
A.
, 2004, “
TRANSEO: A New Simulation Tool for Transient Analysis of Innovative Energy Systems
,” Ph.D. thesis, DiMSET, Università di Genova, Genoa, Italy.
2.
Traverso
,
A.
, 2005, “
TRANSEO Code for the Dynamic Performance Simulation of Micro Gas Turbine Cycles
,” ASME Paper No. GT-2005-68101.
3.
Traverso
,
A.
,
Trasino
,
F.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2008, “
Time Characterization of the Anodic Loop of a Pressurized Solid Oxide Fuel Cell System
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
(
2
), p.
021702
.
4.
Traverso
,
A.
,
Massardo
,
A. F.
, and
Scarpellini
,
R.
, 2006, “
Externally Fired Micro-Gas Turbine: Modelling and Experimental Performance
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
1935
1941
.
5.
Ferrari
,
M. L.
,
Liese
,
E.
,
Tucker
,
D.
,
Lawson
,
L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
, 2007, “
Transient Modeling of the NETL Hybrid Fuel Cell/Gas turbine Facility and Experimental Validation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
1012
1019
.
6.
Wächter
,
C.
,
Lunderstädt
,
R.
, and
Joos
,
F.
, 2006, “
Dynamic Model of a Pressurized SOFC/Gas Turbine Hybrid Power Plant for the Development of Control Concepts
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
271
279
.
7.
Bao
,
C.
,
Zhang
,
K.
,
Ouyang
,
M.
,
Yi
,
B.
, and
Ming
,
P.
, 2006, “
Dynamic Test and Real-time Control Platform of Anode Recirculation for PEM Fuel Cell Systems
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
333
345
.
8.
D’Amato
,
F. J.
, 2006, “
Industrial Application of a Model Predictive Control Solution for Power Plant Startups
,”
Proceedings of the 2006 IEEE International Conference on Control Applications
, Paper No. WeA07.6.
9.
MATLAB, 2007, “
User’s Manual
,” MATLAB R2007A.
10.
Ferrari
,
M. L.
,
Bernardi
,
D.
, and
Massardo
,
A. F.
, 2006, “
Design and Testing of Ejectors for High Temperature Fuel Cell Hybrid Systems
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
284
291
.
11.
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
, 2004, “
Transient Analysis of Solid Oxide Fuel Cell Hybrids. Part B: Anode Recirculation Model
,” ASME Paper No. GT2004-53716.
12.
Agnew
,
G. D.
,
Bozzolo
,
M.
,
Moritz
,
R. R.
, and
Berenyi
,
S.
, 2005, “
The Design and Integration of the Rolls-Royce Fuel Cell Systems 1MW SOFC
,” ASME Paper No. 2005-GT-69122.
13.
Balestrino
,
C.
,
Agnew
,
G. D.
,
Bozzolo
,
M.
, and
Marsano
,
F.
, 2006, “
Conceptual Design of a Solid Oxide Electrolysis Cell System
,” Paper No. ICEPAG2006-24013.
14.
Ferrari
,
M. L.
, 2007, “
Hybrid System Real-Time Model
,” Rolls-Royce Fuel Cell Systems Limited, Internal Technical Report No. 1.
15.
Cheddie
,
D. F.
, and
Munroe
,
N. D. H.
, 2007, “
A Dynamic 1D Model of a Solid Oxide Fuel Cell for Real Time Simulation
,”
J. Power Sources
,
171
, pp.
634
643
. 0378-7753
16.
Roberts
,
R. A.
, and
Brouwer
,
J.
, 2006, “
Dynamic Simulation of 220 kW Solid Oxide Fuel Cell Gas Turbine Hybrid System With Comparison to Data
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
(
1
), pp.
18
25
.
You do not currently have access to this content.