Solid oxide fuel cells (SOFCs) are high-temperature, high-efficiency, combustionless electrochemical energy conversion devices that have potential for combined cycle applications. This paper intends to clarify and expand the efficiency discussions related to SOFC when operating in combined cycle (CC) systems. A brief analysis of the first and second thermodynamic laws is conducted and, building upon a previously developed SOFC dynamic model, operating fuel heating values are determined by utilizing the semi-empirical gas phase heat capacity method. As a result, accurate SOFC stack operational simulations are conducted to calculate its efficiency based on actual thermodynamic parameters. Furthermore, an analysis is conducted of a combined SOFC-CC system using dynamic modeling. Simulation results are given, which are intended to aid researchers in evaluating hybrid SOFC-CC generation systems.

1.
Appleby
,
A. J.
, and
Foulkes
,
F. R.
, 1989,
Fuel Cell Handbook
,
Van Nostrand Reinhold
,
New York
.
2.
Autissier
,
N.
,
Palazzi
,
F.
,
Marechal
,
F.
,
van Herle
,
J.
, and
Favrat
,
D.
, 2007, “
Thermo-Economic Optimization of a Solid Oxide Fuel Cell, Gas Turbine Hybrid System
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
4
(
2
), pp.
123
129
.
3.
Laughton
,
M. A.
, and
Warne
,
D. F.
, 2003,
Electrical Engineer’s Reference Book
,
16th ed.
,
Elsevier
,
Amsterdam
, pp.
26
∕18–26∕
20
.
4.
Chu
,
H.-S.
,
Tsau
,
F.
,
Yan
,
Y.-Y.
,
Hsueh
,
K.-L.
, and
Chen
,
F.-L.
, 2008, “
The Development of a Small PEMFC Combined Heat and Power System
,”
J. Power Sources
0378-7753,
176
(
2
), pp.
499
514
.
5.
Rao
,
A.
,
Maclay
,
J.
, and
Samuelsen
,
S.
, 2004, “
Efficiency of Electrochemical Systems
,”
J. Power Sources
0378-7753,
134
, pp.
181
184
.
6.
Wouodstra
,
N.
,
van der Stelt
,
T. P.
, and
Hemmes
,
K.
, 2006, “
The Thermodynamic Evaluation and Optimization of Fuel Cell Systems
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
155
164
.
7.
Qi
,
A.
,
Pepply
,
B.
, and
Karan
,
K.
, 2007, “
Integrated Fuel Processors for Fuel Cell Application: A Review
,”
Fuel Process. Technol.
0378-3820,
88
, pp.
3
22
.
8.
Calise
,
F.
,
Dentice d’ Accadia
,
M.
,
Vanoli
,
L.
, and
von Spakovsky
,
M. R.
, 2007, “
Full Load Synthesis∕Design Optimization of Hybrid SOFC-GT Power Plant
,”
Energy
0360-5442,
32
, pp.
446
458
.
9.
Wang
,
C.
, and
Nehrir
,
M. H.
, 2007, “
A Physically-Based Dynamic Model for Solid Oxide Fuel Cells
,”
IEEE Trans. Energy Convers.
0885-8969,
22
(
4
), pp.
864
872
.
10.
Felder
,
R.
, and
Rousseau
,
R.
, 1978,
Elementary Principles of Chemical Processes
,
Wiley
,
New York
.
11.
Lutz
,
A. E.
,
Larson
,
R. S.
, and
Keller
,
J. O.
, 2002, “
Thermodynamic Comparison of Fuel Cells to the Carnot Cycle
,”
Int. J. Hydrogen Energy
0360-3199,
27
, pp.
1103
1111
.
12.
Wright
,
S. E.
, 2004, “
Comparison of the Theoretical Performance Potential of Fuel Cells and Heat Engines
,”
Renewable Energy
0960-1481,
29
, pp.
179
195
.
13.
Haynes
,
C.
, 2001, “
Clarifying Reversible Efficiency Misconceptions of High Temperature Fuel Cells in Relation to Reversible Heat Engines
,”
J. Power Sources
0378-7753,
92
, pp.
199
203
.
14.
Hassanzadeh
,
H.
, and
Mansouri
,
S. H.
, 2005, “
Efficiency of Ideal Fuel Cell and Carnot Cycle From a Fundamental Perspective
,”
Bussei Kenkyu
0525-2997,
219
(
4
), pp.
245
254
.
15.
O’Hayre
,
R.
,
Cha
,
S.-W.
,
Colella
,
W.
,
Prinz
,
F. B.
, 2006,
Fuel Cell Fundamentals
,
Wiley
,
New York
.
16.
Lee
,
C. C.
, and
Dar Lin
,
S.
, 2000,
Handbook of Environmental Engineering Calculations
,
McGraw-Hill
,
New York
, pp.
2.46
-
2.48
.
17.
Beausoliel-Morrison
,
I.
,
Schatz
,
A.
, and
Marechal
,
F.
, 2006, “
A Model for Simulating the Thermal and Electrical Production of Small-Scale Solid-Oxide Fuel Cell Cogeneration Systems Within Building Simulation Programs
,”
HVAC&R Res.
1078-9669,
12
(
3a
), pp.
641
667
.
18.
Linstrom
,
P. J.
, and
Mallard
,
W. G.
, eds., 2005, “
NIST Chemistry WebBook—Gas Phase Thermochemistry Data
,” NIST Standard Reference Database Number 69, National Institute of Standards and Technology, http://webbook.nist.govhttp://webbook.nist.gov.
19.
Jamsak
,
W.
,
Assabumrungrat
,
S.
,
Douglas
,
P. L.
,
Laosiripojana
,
N.
, and
Charojrochkul
,
S.
, 2006, “
Theoretical Performance Analysis of Ethanol-Fuelled Solid Oxide Fuel Ocells With Different Electrolytes
,”
Chem. Eng. J.
0300-9467,
119
, pp.
11
18
.
20.
Coutelieris
,
F. A.
,
Douvartzides
,
S.
,
Tsiakaras
,
P.
, 2003, “
The Importance of the Fuel Choice on the Efficiency of a Solid Oxide Fuel Cell System
,”
J. Power Sources
0378-7753,
123
, pp.
200
205
.
21.
Bischoff
,
M.
, 2006, “
Large Stationary Fuel Cell Systems: Status and Dynamic Requirements
,”
J. Power Sources
0378-7753,
154
, pp.
461
466
.
22.
Calise
,
F.
,
Dentice d’Accadia
,
M.
,
Palombo
,
A.
, and
Vanoli
,
L.
, 2006, “
Simulation and Exergy Analysis of a Hybrid Solid Oxide Fuel Cell (SOFC)-Gas Turbine System
,”
Energy
0360-5442,
31
, pp.
3278
3299
.
23.
Boyce
,
M. P.
, 2006,
Gas Turbine Engineering Handbook
,
3rd ed.
,
Elsevier
,
New York
, pp.
86
91
.
You do not currently have access to this content.