The correct prediction of the temperature distribution is a prerequisite for the reliable determination of species and current distributions in any solid oxide fuel cell (SOFC) model. It is even more crucial if the model is intended for the analysis of thermo-mechanical stresses. This paper addresses the different mechanisms of heat generation and absorption in the fuel cell. Particular attention is paid to the heating associated with the oxidation of hydrogen, which is commonly assigned to the interface between electrolyte and anode in SOFC modeling. However, for a detailed determination of the temperature profile in the fuel cell solid components, the separate consideration of the cathodic and anodic half-reactions is required. A method for determining the specific entropy change of the half-reactions based on Seebeck-coefficient data is adopted from the literature and applied to the SOFC. In order to exemplarily demonstrate the contribution of the various heat sources to the overall heat generation as well as the influence of their location, a spatially discretized model of a tubular SOFC is used. Temperature profiles obtained with and without separate consideration of the electrode reactions are compared. The comparison shows that the spatially discretized reaction model is indeed necessary for the reliable assessment of temperature gradients in the ceramic SOFC components.

1.
Ferguson
,
J. R.
,
Fiard
,
J. M.
, and
Herbin
,
R.
, 1996, “
Three-Dimensional Numerical Simulation for Various Geometries of Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
58
(
2
), pp.
109
122
.
2.
Gemmen
,
R. S.
,
Rogers
,
W. A.
, and
Prinkey
,
M. T.
, 2000, “
Application of a Computational Fluid Dynamics Code to Fuel Cells—Integrated SOFC Fuel Cell and Post Oxidizer
,” Technical Notes TN128, American Flame Research Committee (AFRC) International Symposium, Newport Beach, CA.
3.
Yakabe
,
H.
,
Ogiwara
,
T.
,
Hishinuma
,
M.
, and
Yasuda
,
I.
, 2001, “
3-D Model Calculation for Planar SOFC
,”
J. Power Sources
0378-7753,
102
(
1–2
), pp.
144
154
.
4.
Rao
,
A. D.
, and
Samuelsen
,
G. S.
, 2002, “
Analysis Strategies for Tubular Solid Oxide Fuel Cell Based Hybrid Systems
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
3
), pp.
503
509
.
5.
Trasino
,
F.
,
Magistri
,
L.
, and
Costamagna
,
P.
, 2004, “
Transient Analysis of Solide Oxide Fuel Cell Hybrids. Part A: Fuel Cell Models
,” ASME Paper No. GT2004-53842.
6.
Stiller
,
C.
,
Thorud
,
B.
,
Seljebø
,
S.
,
Mathisen
,
Ø.
,
Karoliussen
,
H.
, and
Bolland
,
O.
, 2005, “
Finite-Volume Modeling and Hybrid-Cycle Performance of Planar and Tubular Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
141
(
2
), pp.
227
240
.
7.
Xue
,
X.
,
Tang
,
J.
,
Sammes
,
N.
, and
Du
,
Y.
, 2005, “
Dynamic Modeling of Single Tubular SOFC Combining Heat/Mass Transfer and Electrochemical Reaction Effects
,”
J. Power Sources
0378-7753,
142
(
1–2
), pp.
211
222
.
8.
VanderSteen
,
J. D. J.
,
Kenney
,
B.
,
Pharoah
,
J. G.
, and
Karan
,
K.
, 2004, “
Mathematical Modelling of the Transport Phenomena and the Chemical/Electrochemical Reactions in Solid Oxide Fuel Cells: A Review
,”
Proceedings of Hydrogen and Fuel Cells 2004
,
Toronto, Canada
, Sept. 25–28.
9.
Yoshiba
,
F.
, 2004, “
Numerical Analysis of the Single Electrode Heat Effect in Molten Carbonate Fuel Cells: Temperature Analysis of the Electrolyte Plate by Applying Irreversible Thermodynamics
,”
Int. J. Energy Res.
0363-907X,
28
, pp.
1361
1377
.
10.
Kanamura
,
K.
, and
Takehara
,
Z.
, 1993, “
Temperature and Thermal Stress Distribution in a Tubular Solid Oxide Fuel Cell
,”
Bull. Chem. Soc. Jpn.
0009-2673,
66
(
10
), pp.
2797
2803
.
11.
Nishida
,
K.
,
Takagi
,
T.
, and
Kinoshita
,
S.
, 2003, “
Analysis of Electrochemical Performance and Exergy Loss in Solid Oxide Fuel Cell
,” ASME Paper No. GT2003-38094.
12.
Ito
,
Y.
,
Foulkes
,
F. R.
, and
Yoshizawa
,
S.
, 1982, “
Energy Analysis of a Steady-State Electrochemical Reactor
,”
J. Electrochem. Soc.
0013-4651,
129
(
9
), pp.
1936
1943
.
13.
Ito
,
Y.
,
Kaiya
,
H.
,
Yoshizawa
,
S.
,
Ratkje
,
S. K.
, and
Førland
,
T.
, 1984, “
Electrode Heat Balances of Electrochemical Cells
,”
J. Electrochem. Soc.
0013-4651,
131
(
11
), pp.
2504
2509
.
14.
Førland
,
T.
, and
Ratkje
,
S. K.
, 1980, “
Entropy Production by Heat, Mass, Charge Transfer and Specific Chemical Reactions
,”
Electrochim. Acta
0013-4686,
25
(
2
), pp.
157
163
.
15.
Hamann
,
C. H.
, and
Vielstich
,
W.
, 1998,
Elektrochemie
,
3rd Ed.
,
Wiley-VCH
,
Weinheim
.
16.
Rechenauer
,
Ch.
, and
Achenbach
,
E.
, 1996, “
Dreidimensionale Mathematische Modellierung des Stationären und Instationären Verhaltens Oxidkeramischer Hochtemperatur-Brennstoffzellen
,” Ph.D. thesis, JÜL-2752, RWTH Aachen, Germany.
17.
Ruka
,
R. J.
,
Bauerle
,
J. E.
, and
Dykstra
,
L.
, 1968, “
Seebeck Coefficient of a (ZrO2)0.85(CaO)0.15 Electrolyte Thermocell
,”
J. Electrochem. Soc.
0013-4651,
115
(
5
), pp.
497
501
.
18.
Ratkje
,
S. K.
, and
Tomii
,
Y.
, 1993, “
Transported Entropy in Zirconia With 3to12MolePercent Yttria
,”
J. Electrochem. Soc.
0013-4651,
140
(
1
), pp.
59
66
.
19.
Takehara
,
Z.
,
Kanamura
,
K.
, and
Yoshioka
,
S.
, 1989, “
Thermal Energy Generated by Entropy Change in Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
136
(
9
), pp.
2506
2511
.
20.
Ratkje
,
S. K.
, and
Møller-Holst
,
S.
, 1993, “
Exergy Efficiency and Local Heat Production in Solid Oxide Fuel Cells
,”
Electrochim. Acta
0013-4686,
38
(
2/3
), pp.
447
453
.
21.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
, 1987,
The Properties of Gases and Liquids
,
4th ed.
,
McGraw-Hill Companies
,
New York
.
22.
Bessette
,
N. F.
,
Borglum
,
B. P.
,
Schiehl
,
H.
, and
Schmidt
,
D. S.
, 2001, “
Siemens SOFC Technology of the Way to Economic Competitiveness
,” Power Journal, Magazine of the Siemens Power Generation Group, http://www.powergeneration.siemens.com/download/pool/2_PJ_1_01_e_Bessette_neu.pdfhttp://www.powergeneration.siemens.com/download/pool/2_PJ_1_01_e_Bessette_neu.pdf.
23.
Singhal
,
S. C.
, 1999, “
Progress in Solid Oxide Fuel Cell Technology
,”
Proc.-Electrochem. Soc.
0161-6374,
99
(
19
), pp.
39
51
.
24.
Singhal
,
S. C.
, 2000, “
Advances in Solid Oxide Fuel Cell Technology
,”
Solid State Ionics
0167-2738,
135
(
1–4
), pp.
305
313
.
25.
Samuelsen
,
S.
, 2000, “
Analyses and Technology Transfer for Fuel Cell Systems
,” Consultant Report, California Energy Commission, Irvine, CA.
26.
Thorud
,
B.
,
Bolland
,
O.
, and
Alvestad
,
T.
, 2001, “
Integration of Pressurized High Temperature Fuel Cells in Gas Turbine Cycles
,” Department of Thermal Energy and Hydropower, NTNU, Norway.
27.
Bossel
,
U. G.
, 1992, “
Facts and Figures. Final Report on SOFC Data
,” Swiss International Office of Energy, Bern, Switzerland.
28.
Selimovic
,
A.
, 2002, “
Modelling of Solid Oxide Fuel Cells Applied to the Analysis of Integrated Systems With Gas Turbines
,” Ph.D. thesis, Lund University, Sweden.
29.
Ivers-Tiffée
,
E.
,
Herbstritt
,
D.
,
Müller
,
A.
, and
Weber
,
A.
, 2000, “
Electrode Reaction and Electrochemical Performance-Materials and Technology Development for Low Temperature SOFC
,”
41st Battery Symposium
,
Nagoya, Japan
, Nov. 20–22.
30.
Hirschenhofer
,
J. H.
,
Engleman
,
R. R.
, and
Stauffer
,
D. B.
, 2000,
Fuel Cells: A Handbook
,
5th ed.
,
U.S. Department of Energy
,
Washington, DC
.
31.
Hu
,
W.
,
Guan
,
H.
,
Sun
,
X.
,
Li
,
S.
,
Fukumoto
,
M.
, and
Okane
,
I.
, 1998, “
Electrical and Thermal Conductivities of Nickel-Zirconia Cermets
,”
J. Am. Ceram. Soc.
0002-7820,
81
(
8
), pp.
2209
2212
.
32.
Webb
,
S. W.
, and
Pruess
,
K.
, 2003, “
The Use of Fick’s Law for Modeling Trace Gas Diffusion in Porous Media
,”
Transp. Porous Media
0169-3913,
51
(
3
), pp.
327
341
.
33.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 2002,
Transport Phenomena
,
2nd ed.
,
Wiley
,
New York
.
34.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1987,
Convective Heat and Mass Transfer
,
2nd ed.
,
McGraw-Hill Companies
,
New York
.
35.
Bessette
,
N. F.
,
Wepfer
,
W. J.
, and
Winnick
,
J.
, 1995, “
A Mathematical Model of a Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
142
(
11
), pp.
3792
3800
.
36.
Campanari
,
S.
, 2001, “
Thermodynamic Model and Parametric Analysis of a Tubular SOFC Module
,”
J. Power Sources
0378-7753,
92
(
1
), pp.
26
34
.
You do not currently have access to this content.