A numerical model of a proton exchange membrane fuel cell has been developed to predict the performance of a large active area fuel cell with the water cooling thermal management system. The model includes three submodels for water transport, electrochemical reaction, and heat transfer. By integrating those submodels, local electric resistance and overpotential depending on the water and temperature distribution can be predicted. In this study the effects of the inlet gas temperature and humidity on the fuel cell performance are explored, and the effect of the temperature distribution at different coolant temperatures is investigated. The results show that the changes in local electric resistance due to temperature distribution cause fuel cell power decrease. Therefore, the coolant temperature and flow rate should be controlled properly depending on the operating conditions in order to minimize the temperature distribution while maximizing the power output of the fuel cell.

1.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
(
8
), pp.
1151
1163
.
2.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
139
(
9
), pp.
2477
2491
.
3.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2342
.
4.
Springer
,
T. E.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1993, “
Modeling of Experimental Diagnostics in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
12
), pp.
3513
3526
.
5.
Fuller
,
T. F.
, and
Newman
,
J.
, 1993, “
Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
5
), pp.
1218
1225
.
6.
Nguyen
,
T. V.
, and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton-Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
8
), pp.
2178
2186
.
7.
Ju
,
H.
,
Meng
,
H.
, and
Wang
,
C. Y.
, 2005, “
A Single-Phase, Non-Isothermal Model for PEM Fuel Cells
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1303
1315
.
8.
Djilali
,
N.
, and
Lu
,
D. M.
, 2002, “
Influence of Heat Transfer on Gas and Water Transport in Fuel Cells
,”
Int. J. Therm. Sci.
1290-0729,
41
, pp.
29
40
.
9.
Wang
,
L.
,
Husar
,
A.
,
Zhou
,
T.
, and
Liu
,
H.
, 2003, “
A Parametric Study of PEM Fuel Cell Performances
,”
Int. J. Hydrogen Energy
0360-3199,
28
(
11
), pp.
1263
1272
.
10.
Broka
,
K.
, and
Ekdunge
,
P.
, 1997, “
Modeling the PEM Fuel Cell Cathode
,”
J. Appl. Electrochem.
0021-891X,
27
, pp.
281
289
.
11.
Costamagna
,
P.
, 2001, “
Transport Phenomena in Polymeric Membrane Fuel Cells
,”
Chem. Eng. Sci.
0009-2509,
56
, pp.
323
332
.
12.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
,
4th ed.
,
Wiley
,
New York
, pp.
420
450
.
13.
Parthasarathy
,
A.
,
Srinivasan
,
S.
,
Appleby
,
A. J.
, and
Martin
,
C. R.
, 1992, “
Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum∕Nafion Interface: A Microelectrode Investigation
,”
J. Electrochem. Soc.
0013-4651,
139
(
9
), pp.
2530
2537
.
14.
Musser
,
J.
, and
Wang
,
C. Y.
, 2000, “
Heat Transfer in a Fuel Cell Engine
,”
Proceedings of the 34th National Heat Transfer Conference
,
Pittsburgh, PA
, Aug. 20–22.
You do not currently have access to this content.