We have investigated the behavior of an operating polymer electrolyte fuel cell (PEFC) with supplying a mixture of carbon monoxide (CO) and hydrogen (H2) gases into the anode to develop the PEFC diagnosis method for anode CO poisoning by reformed hydrogen fuel. We analyze the characteristics of the CO poisoned anode of the PEFC at 80°C including CO adsorption and electro-oxidation behaviors by current-voltage (IV) measurement and electrochemical impedance spectroscopy (EIS) to find parameters useful for the diagnosis. IV curves show the dependence of the output voltage on the CO adsorption and electro-oxidation. EIS analyses are performed with an equivalent circuit model consisting of several resistances and capacitances attributed to the activation, diffusion, and adsorption∕desorption processes. As the result, those resistances and capacitances are shown to change with current density and anode overpotential depending on the CO adsorption and electro-oxidation. The characteristic changes of those parameters show that they can be used for the diagnosis of the CO poisoning.

1.
Gottesfeld
,
S.
, and
Pafford
,
J.
, 1988, “
A New Approach to the Problem of Carbon Monoxide Poisoning in Fuel Cells Operating at Low Temperatures
,”
J. Electrochem. Soc.
0013-4651,
135
(
10
), pp.
2651
2652
.
2.
Gasteiger
,
H.
,
Marković
,
N.
, and
Ross
, Jr.,
P.
, 1995, “
H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 1. Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects
,”
J. Phys. Chem.
0022-3654,
99
(
20
), pp.
8290
8301
.
3.
Igarashi
,
H.
,
Fujino
,
T.
, and
Watanabe
,
M.
, 1995, “
Hydrogen Electro-Oxidation on Platinum Catalysts in the Presence of Trace Carbon Monoxide
,”
J. Electroanal. Chem.
0022-0728,
391
(
1–2
), pp.
119
123
.
4.
Koper
,
M. T. M.
,
Lukkien
,
J. J.
,
Jansen
,
A. P. J.
, and
van Santen
,
R. A.
, 1999, “
Lattice Gas Model for CO Electrooxidation on Pt–Ru Bimetallic Surfaces
,”
J. Phys. Chem. B
1089-5647,
103
, pp.
5522
5529
.
5.
Ciureanu
,
M.
, and
Wang
,
H.
, 1999, “
Electrochemical Impedance Study of Electrode-Membrane Assemblies in PEM Fuel Cells. I. Electro-Oxidation of H2 and H2∕CO Mixtures on Pt-Based Gas-Diffusion Electrodes
,”
J. Electrochem. Soc.
0013-4651,
146
(
11
), pp.
4031
4040
.
6.
Wagner
,
N.
, and
Gülzow
,
E.
, 2004, “
Change of Electrochemical Impedance Spectra (EIS) With Time During CO-Poisoning of the Pt-Anode in a Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
127
, pp.
341
347
.
7.
Enbäck
,
S.
, and
Lindbergh
,
G.
, 2005, “
Experimentally Validated Model for CO Oxidation on PtRu∕C in a Porous PEFC Electrode
,”
J. Electrochem. Soc.
0013-4651,
152
(
1
), pp.
A23
A31
.
8.
Mawardi
,
A.
,
Yang
,
F.
, and
Pitchumani
,
R.
, 2005, “
Optimization of the Operating Parameters of a Proton Exchange Membrane Fuel Cell for Maximum Power Density
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
(
2
), pp.
121
135
.
9.
Konomi
,
T.
, and
Saho
,
I.
, 2005, “
Research on Diagnosis Technique on PEFC Running Condition (High Speed Analysis by FFT and Feasibility Study of Diagnosis)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
71
(
701
), pp.
245
250
.
10.
Konomi
,
T.
, and
Saho
,
I.
, 2006, “
Research of Diagnosis Technique on PEFC Running Condition (Overvoltage Analysis and Diagnosis of PEFC by FFT)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
72
(
2
), pp.
455
462
.
11.
Igarashi
,
H.
,
Fujino
,
T.
,
Zhu
,
Y.
,
Uchida
,
H.
, and
Watanabe
,
M.
, 2001, “
CO Tolerance of Pt Alloy Electrocatalysts for Polymer Electrolyte Fuel Cells and the Detoxification Mechanism
,”
Phys. Chem. Chem. Phys.
1463-9076,
3
(
3
), pp.
306
314
.
12.
Yano
,
H.
,
Ono
,
C.
,
Shiroishi
,
H.
,
Saito
,
M.
,
Uchimoto
,
Y.
, and
Okada
,
T.
, 2006, “
High CO Tolerance of N,N-Ethylenebis(salicylideneaminato)oxovanadium(IV) as a Cocatalyst to Pt for the Anode of Reformate Fuel Cells
,”
Chem. Mater.
0897-4756,
18
(
18
), pp.
4505
4512
.
13.
Kita
,
H.
,
Ye
,
S.
, and
Sugimura
,
K.
, 1991, “
Effects of Adsorbed CO on the Electrode Reactions at a Platinum Electrode
,”
J. Electroanal. Chem. Interfacial Electrochem.
0022-0728,
291
, pp.
283
296
.
14.
Armstrong
,
R. D.
, and
Henderson
,
M.
, 1972, “
Impedance Plane Display of a Reaction With an Adsorbed Intermediate
,”
J. Electroanal. Chem. Interfacial Electrochem.
0022-0728,
39
(
1
), pp.
81
90
.
15.
Wiezell
,
K.
,
Gode
,
P.
, and
Lindbergh
,
G.
, 2006, “
Steady-State and EIS Investigations of Hydrogen Electrodes and Membranes in Polymer Electrolyte Fuel Cells I. Modeling
,”
J. Electrochem. Soc.
0013-4651,
153
(
4
), pp.
A749
A758
.
16.
Harrington
,
D.
, and
Conway
,
B.
, 1987, “
ac Impedance of Faradic Reactions Involving Electrosorbed Intermediates -I. Kinetic Theory
,”
Electrochim. Acta
0013-4686,
32
(
12
), pp.
1703
1712
.
17.
2005,
Impedance Spectroscopy: Theory, Experiment, and Applications
,
2nd ed.
,
E.
Barsoukov
and
J. R.
Macdonald
, eds.,
Wiley
,
New York
.
18.
Konomi
,
T.
,
Hoshiko
,
T.
, and
T. Kawakami
,
A.
, 2006, “
Research on PEFC Overvoltage Analysis Method by Impedance Technique (1st Report, Estimation of Resistances and Overvoltages)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
72
(
723
), pp.
2780
2785
.
19.
Konomi
,
T.
,
Kawakami
,
A.
, and
Tachibana
,
H.
, 2005, “
Effects of Internal Leak Current on PEFC Output Voltage (Internal Leak Current at Open Circuit and Close Circuit in Smaller Current Density Region)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
71
(
712
), pp.
3025
3030
.
20.
Bard
,
A. J.
, and
Faulkner
,
L. R.
, 2001,
Electrochemical Methods: Fundamentals and Applications
,
2nd ed.
,
Wiley
,
New York
.
You do not currently have access to this content.