Performance analysis of the solid oxide fuel cell-microgas turbine (SOFC-MGT) hybrid system has been made. We assume a fuel composition that is methane based with varying concentrations of other species that are expected to be present in biomass-derived gas streams in preparation for the study of biomass fueled SOFC-MGT hybrid system. This is based on the fact that the chemical composition of biomass fuel produced from different fuel production processes is diversified, i.e., in one case one chemical species rich in concentration and in another case another chemical species rich. In the analysis, the multistage model for internal reforming SOFC module developed previously with some modification is used. With this model, studies cover not only the performance of the hybrid system but also the spatial distributions of temperature and concentration of some chemical species inside the module, namely, in the cell stack and in the internal reformer.

1.
Stevens
,
D. J.
, 1989, “
Review and Analysis of the 1980–1989 Biomass Thermochemical Conversion Program
,”
U.S. Department of Energy
,
Golden, CO
.
2.
van der Drift
,
A.
,
van Doom
,
J.
, and
Vermeulen
,
J. B.
, 2001, “
Ten Residual Biomass Fuels for Circulating Fluidized-Bed Gasification
,”
Biomass Bioenergy
0961-9534,
20
, pp.
45
56
.
3.
Miccio
,
F.
,
Moersch
,
O.
,
Spliethoff
,
H.
, and
Hein
,
K. R. G.
, 1999, “
Generation and Conversion of Carbonaceous Fine Particles During Bubbling Fluidized Bed Gasification of a Biomass Fuel
,”
Fuel
0016-2361,
78
, pp.
1473
1481
.
4.
Na
,
J. I.
,
Park
,
S. J.
,
Kim
,
Y. K.
,
Lee
,
J. G.
, and
Kim
,
J. H.
, 2003, “
Characteristics of Oxygen-Blown Gasification for Combustible Waste in a Fixed-Bed Gasifier
,”
Appl. Energy
0306-2619,
75
, pp.
275
285
.
5.
Herguido
,
J.
,
Corell
,
J.
, and
Gonzalez-Saiz
,
J.
, 1992, “
Steam Gasification of Lignocellulosic Residues in a Fluidized Bed at Small Pilot Scale: Effect of Type of Feedstock
,”
Ind. Eng. Chem. Res.
0888-5885,
31
(
5
), pp.
1274
1282
.
6.
Franco
,
C.
,
Pinto
,
F.
, and
Cabrita
,
I.
, 2003, “
The Study of Reactions Influencing the Biomass Steam Gasification Process
,”
Fuel
0016-2361,
82
, pp.
835
842
.
7.
Rapagna
,
S.
,
Jand
,
N.
,
Kiennemann
,
A.
, and
Foscolo
,
P. U.
, 2000, “
Steam-Gasification of Biomass in a Fluidized-Bed of Olivine Particles
,”
Biomass Bioenergy
0961-9534,
19
, pp.
187
197
.
8.
Van harle
,
J.
,
Marechal
,
F.
,
Leuenberger
,
S.
,
Membrez
,
Y.
,
Bucheli
,
O.
, and
Favrat
,
D.
, 2004, “
Process Flow Model of Solid Oxide Fuell Cell System Supplied With Sewage Biogas
,”
J. Power Sources
0378-7753,
131
, pp.
127
141
.
9.
Hirschenhofer
,
J. H.
,
Stauffer
,
D. B.
,
Englemen
,
R. R.
, and
Klett
,
M. G.
, 1998,
Fuel Cell Handbook
,
4th ed.
,
U.S. Department of Energy
,
Morgantown, WV
.
10.
Song
,
T. W.
,
Sohn
,
J. L.
,
Kim
,
J. H.
,
Kim
,
T. S.
,
Ro
,
S. T.
, and
Suzuki
,
K.
, 2005, “
Performance Analysis of a Tubular Solid Oxide Fuel Cell/Micro Gas Turbine Hybrid Power System Based on a Quasi-Two Dimensional Model
,”
J. Power Sources
0378-7753,
142
, pp.
30
42
.
11.
Massardo
,
A. F.
, and
Lubelli
,
F.
, 2000, “
Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT). Part A: Cell Model and Cycle Thermodynamic Analysis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
, pp.
27
35
.
12.
Uechi
,
H.
,
Kimijima
,
S.
, and
Kasagi
,
N.
, 2004, “
Cycle Analysis of Gas Turbine-Fuel Cell Cycle Hybrid Micro Generation System
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
755
762
.
13.
George
,
R. A.
, 2000, “
Status of Tubular SOFC Field Unit Demonstrations
,”
J. Power Sources
0378-7753,
86
, pp.
134
139
.
14.
Suzuki
,
K.
,
Song
,
T. W.
,
Kim
,
J. H.
, and
Ro
,
S. T.
, 2004, “
Multi-Stage Model of Methane-Fuelled SOFC and Performance of SOFC-GT Hybrid System—Effect of Heat Loss From the Stack
,”
Proceedings of 59th Congress ATI
,
Genova
.
15.
Song
,
T. W.
,
Kim
,
J. H.
,
Ro
,
S. T.
, and
Suzuki
,
K.
, 2003, “
Quasi-2D Model of IIR-SOFC Stack for SOFC/MGT Hybrid System
,”
Proceedings of ICOPE-3
,
Kobe
.
16.
George
,
R. A.
, and
Bessette
,
N. F.
, 1998, “
Reducing the Manufacturing Cost of Tubular SOFC Technology
,”
J. Power Sources
0378-7753,
71
, pp.
131
137
.
17.
Singhal
,
S. C.
, 2000, “
Advanced in Solid Oxide Fuell Cell Technology
,”
Solid State Ionics
0167-2738,
135
, pp.
305
313
.
18.
Reed
,
T. B.
, and
Das
,
A.
, 1988,
Handbook of Biomass Downdraft Gasifier Engine System
,
U.S. Department of Energy
,
Golden, CO
.
19.
Corti
,
A.
, and
Lombardi
,
L.
, 2004, “
Biomass Integrated Gasification Combined Cycle With Reduced CO2 Emissions: Performance Analysis and Life Cycle Assessment (LCA)
,”
Energy
0360-5442,
29
, pp.
2109
2124
.
20.
Dicks
,
A. L.
, 1996, “
Hydrogen Generation From Natural Gas for the Fuel Cell Systems of Tomorrow
,”
J. Power Sources
0378-7753,
61
, pp.
113
124
.
21.
Achenbach
,
E.
, 1994, “
Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack
,”
J. Power Sources
0378-7753,
49
, pp.
333
348
.
You do not currently have access to this content.