High power density (HPD) solid oxide fuel cells (SOFCs) possess the attributes of reduced ohmic polarization and greater active area per unit volume, relative to current state-of-the-art cylindrical SOFCs. Several variations of the basic “flattened tube” HPD geometry are being analyzed and tested. For example, the HPD10 cell enjoys a 58% gain in power density over current practice. In this variation, ten air channels are separated by nine ribs that connect the flat faces of the cell. Other cell geometries, such as the delta cell, and advanced cell materials are under consideration and have the potential for further improvement in power density. The higher power density makes the application of HPD SOFCs to compact auxiliary power units (APUs) attractive. This paper reviews geometric and performance characteristics for HPD cells and presents a conceptual design for an APU of 5kW net output.

1.
Orsello
,
G.
,
Disegna
,
G.
,
Litzinger
,
K.
,
Basel
,
R.
,
Cali
,
M.
, and
Santrelli
,
M.
, 2006,
Proceedings of the 6th European SOFC Forum
,
Lucerne
.
2.
Vora
,
S. D.
, 2003,
SECA Workshop and Core Technology Program Peer Review Proceedings
,
National Energy Technology Laboratory
,
Seattle, WA
.
3.
Vora
,
S. D.
, 2004,
SECA Workshop and Core Technology Program Peer Review Proceedings
,
National Energy Technology Laboratory
,
Boston, MA
.
4.
Vora
,
S. D.
, 2005,
SECA Workshop and Core Technology Program Peer Review Proceedings
,
National Energy Technology Laboratory
,
Philadelphia, PA
.
5.
2003,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
S.
Singhal
and
K.
Kendall
, eds.,
Elsevier
,
New York
, p.
216
.
6.
Litzinger
,
K. P.
,
Lundberg
,
W. L.
,
Vora
,
S. D.
, and
Veyo
,
S. E.
, 2005,
Proceedings of ASME Turbo Expo 2005 Power for Land, Sea, and Air
,
Reno, NV
, Jun.
7.
Vora
,
S. D.
, 2004,
Fuel Cell Seminar
,
Courtesy Associates
,
Washington, D.C.
, p.
117
.
8.
Agnew
,
G. D.
, 2003,
SOFC-VIII
,
The Electrochemical Society Proceedings Series
,
S. C.
Singhal
and
M.
Dokiya
, eds.,
Pennington, NJ
, p.
78
.
9.
Song
,
R.-H.
,
Kim
,
J. H.
,
Son
,
H. J.
,
Shin
,
D. R.
, and
Yokokawa
,
H.
, 2003,
SOFC-VIII
,
The Electrochemical Society Proceedings Series
,
S. C.
Singhal
and
M.
Dokiya
, eds.,
Pennington, NJ
, p.
1029
.
10.
Prentice
,
G.
, 1990,
Electrochemical Engineering Principles
,
Prentice-Hall
,
Englewood Cliffs, NJ
, p.
120
.
11.
Botti
,
J. J.
, 2003,
SOFC-VIII
,
The Electrochemical Society Proceedings Series
,
S. C.
Singhal
and
M.
Dokiya
, eds.,
Pennington, NJ
, p.
16
.
12.
Halliday
,
D.
,
Resnick
,
R.
, and
Walker
,
J.
, 1994,
Fundamentals of Physics. Extended
,
4th ed.
,
Wiley
,
New York
, p.
773
.
13.
Mukerjee
,
S.
,
Haltiner
,
K.
,
Shaffer
,
S.
,
Meinhardt
,
K.
,
Chick
,
L.
,
Sprenkle
,
V.
,
Weil
,
S.
, and
Kim
,
J. Y.
, 2005,
SOFC-IX
,
The Electrochemical Society Proceedings Series
,
S. C.
Singhal
and
J.
Mizusaki
, eds.,
Pennington, NJ
, p.
48
.
14.
Minh
,
N. Q.
, 2005,
SOFC-IX
,
The Electrochemical Society Proceedings Series
,
S. C.
Singhal
and
J.
Mizusaki
, eds.,
Pennington, NJ
, p.
76
.
15.
Tang
,
E.
,
Prediger
,
D.
,
Pastula
,
M.
, and
Borglum
,
B.
, 2005,
SOFC-IX
,
The Electrochemical Society Proceedings Series
,
S. C.
Singhal
and
J.
Mizusaki
, eds.,
Pennington, NJ
, p.
89
.
You do not currently have access to this content.