Although historically grown as independent energy technologies, fuel cell and cogeneration may adequately work to each other’s benefit. Some fuel cells deliver heat at sufficiently high temperatures, which can be certainly used as heat sources for cogeneration or trigeneration schemes. The paper presents an overview of the innumerable fuel cell system configurations for simultaneous production of (i) heat and power, (ii) cooling and electricity, and (iii) cooling, heat, and electricity. The survey includes combined power cycles (also called hybrid systems) where the fuel cell works together with other thermodynamic cycles to produce, with a high fuel-to-electricity efficiency, electricity alone. A large number of cogeneration arrangements are mentioned. Some are described in detail. A brief analysis of benefits and drawbacks of such systems was undertaken. The review was limited to articles published in archival periodicals, proceedings, and a few technical reports, theses, and books.

1.
Silveira
,
J. L.
,
Leal
,
E. M.
, and
Ragonha
,
F. F.
Jr.
, 2001, “
Analysis of a Molten Carbonate Fuel Cell: Cogeneration to Produce Electricity and Cooling Water
,”
Energy
0360-5442,
26
, pp.
891
904
.
2.
Jurado
,
F.
, and
Valverde
,
M.
, 2003, “
Combined Molten Carbonate Fuel Cell and Gas Turbine Systems for Efficient Power and Heat Generation Using Biomass
,”
Electr. Power Syst. Res.
0378-7796,
65
, pp.
223
232
.
3.
Jackson
,
G. S.
, 2004, “
Fuel Cells for Stationary Power. The Promise Behind the Press Releases
,”
HVAC&R Res.
1078-9669,
10
(
3
), pp.
231
232
.
4.
Larminie
,
J.
, and
Dicks
,
A.
, 2003, “
Fuel Cell Systems Explained
,”
2nd ed.
,
Wiley
,
Chichester, England
.
5.
Veyo
,
S. E.
,
Shockling
,
L. A.
,
Dederer
,
J. T.
,
Gillet
,
J. E.
, and
Lundberg
,
W. L.
, 2002, “
Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems: Status
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
4
), pp.
845
849
.
6.
Farooque
,
M.
, and
Maru
,
H. C.
, 2001, “
Fuel Cells: The Clean and Efficient Power Generators
,”
Proc. IEEE
0018-9219,
89
(
12
), pp.
1819
1829
.
7.
Samuelsen
,
S.
, 2004, “
Fuel Cell/Gas Turbine Hybrid Systems
,” ASME International Gas Turbine Institute.
8.
Al-Hallaj
,
S.
,
Alasfour
,
F.
,
Parekh
,
S.
,
Amiruddin
,
S.
,
Selman
,
J. R.
, and
Ghezel-Ayagh
,
H.
, 2004, “
Conceptual Design of a Novel Hybrid Fuel Cell/Desalination System
,”
Desalination
0011-9164,
164
, pp.
19
31
.
9.
Williams
,
M. C.
,
Strakey
,
J. P.
, and
Singhal
,
S. C.
, 2004, “
U.S. Distributed Generation Fuel Cell Program
,”
J. Power Sources
0378-7753,
131
, pp.
79
85
.
10.
Hirschenhofer
,
J. H.
, 1997, “
Fuel Cell Status: 1996
,”
IEEE Aerosp. Electron. Syst. Mag.
0885-8985, March (
3
), pp.
23
28
.
11.
Hinsberger
,
M.
, and
Hoogers
,
G.
, 2003, “
Stationary Power Generation
,”
Fuel Cell Technology Handbook
,
G.
Hoogers
, ed.,
CRC
,
Boca Raton, FL
, Chap. 12.
12.
Vargas
,
J. V. C.
,
Ordonez
,
J. C.
, and
Bejan
,
A.
, 2004, “
Constructal Flow Structure for a PEM Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4177
4193
.
13.
Vargas
,
J. V. C.
, and
Bejan
,
A.
, 2004, “
Thermodynamic Optimization of Internal Structure in a Fuel Cell
,”
Int. J. Energy Res.
0363-907X,
28
(
4
), pp.
319
339
.
14.
Kraus
,
P.
, 1994, “
Systems’ Optimization: Achieving the Balance
,”
J. Power Sources
0378-7753,
49
(
1–3
), pp.
53
59
.
15.
Hart
,
D.
, and
Bauen
,
A.
, 2003, “
Fuel Cell Fuel Cycles
,”
Fuel Cell Technology Handbook
,
G.
Hoogers
, ed.,
CRC
,
Boca Raton, FL
, Chap. 12.
16.
Dunbar
,
W. R.
,
Lior
,
N.
, and
Gaggioli
,
R. A.
, 1991, “
Combining Fuel Cells With Fuel-Fired Power Plants for Improved Exergy Efficiency
,”
Energy
0360-5442,
16
(
10
), pp.
1259
1274
.
17.
Singhal
,
S. C.
, 2002, “
Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications
,”
Solid State Ionics
0167-2738,
152–153
, pp.
405
410
.
18.
Costamagna
,
P.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2001, “
Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,”
J. Power Sources
0378-7753,
96
, pp.
352
368
.
19.
Massardo
,
A. F.
,
McDonald
,
C. F.
, and
Korakiantis
,
T.
, 2002, “
Microturbine/Fuel Cell Coupling for High-Efficiency Electrical-Power Generation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
1
), pp.
110
116
.
20.
Rao
,
A. D.
, and
Samuelsen
,
G. S.
, 2002, “
Analysis Strategies for Tubular Solid Oxide Fuel Cell Based Hybrid Systems
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
124
(
3
), pp.
503
509
.
21.
Uechi
,
H.
,
Kimijima
,
S.
, and
Kasagi
,
N.
, 2001, “
Cycle Analysis of Gas Turbine-Fuel Cell Hybrid Micro Generation System
,”
Proceedings of JPGC’01, 2001 International Joint Power Generation Conference
, ASME,
New Orleans
, pp.
1
9
.
22.
Massardo
,
A. F.
, and
Lubelli
,
F.
, 2000, “
Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT): Part A—Cell Model and Cycle Thermodynamic Analysis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
(
1
), pp.
27
35
.
23.
Gorla
,
R. S. R.
, 2004, “
Probabilistic Analysis of a Solid-Oxide Fuel-Cell Based Hybrid Gas-Turbine System
,”
Appl. Energy
0306-2619,
78
, pp.
63
74
.
24.
Schaefer
,
L. A.
, and
Schaefer
,
A. J.
, 2004, “
Locating Hybrid Fuel Cell-Turbine Power Generation Units Under Uncertainty
,”
Ann. Operat. Res.
0254-5330,
132
(
1–4
), pp.
301
322
.
25.
Nadal
,
M.
, and
Babir
,
F.
, 1996, “
Development of a Hybrid Fuel Cell/Battery Powered Electric Vehicle
,”
Int. J. Hydrogen Energy
0360-3199,
21
(
6
), pp.
497
505
.
26.
Jiang
,
Z. H.
,
Gao
,
L. J.
,
Blackwelder
,
M. J.
, and
Dougal
,
R. A.
, 2004, “
Design and Experimental Tests of Control Strategies for Active Hybrid Fuel Cell/Battery Power Sources
,”
J. Power Sources
0378-7753,
130
(
1–2
), pp.
163
171
.
27.
Jiang
,
Z. H.
,
Gao
,
L. J.
, and
Dougal
,
R. A.
, 2005, “
Flexible Multiobjective Control of Power Converter in Active Hybrid Fuel Cell/Battery Power Sources
,”
IEEE Trans. Power Electron.
0885-8993,
20
(
1
), pp.
244
253
.
28.
Beausoleil-Morrison
,
I.
,
Motillo
,
M.
,
Brandon
,
R.
,
Sears
,
P.
, and
Ferguson
,
A.
, 2004, “
A Model for Simulation the Thermal and Electrical Production of Small-Scale Solid-Oxide Fuel Cell Co-Generation Systems Within Building Simulation Programs
,”
Proceedings of eSim 2004, The Canadian Conference on Building Energy Simulation
, Vancouver, Canada, June 9–11.
29.
Watanabe
,
T.
, 1997, “
Fuel Cell Power System Applications in Japan
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
211
(
2
), pp.
113
119
.
30.
Willingham
,
M.
, 2003, “
Review of Combined Heat and Power Technologies
,”
Workshop on Combined Heat and Power Development in Virginia
,
Alexandria
, Appendix B.
31.
Ellis
,
M. W.
, and
Gunes
,
M. B.
, 2002, “
Status of Fuel Cell Systems for Combined Heat and Power Applications in Buildings
,”
ASHRAE Trans.
0001-2505: Symposia,
108
(
12
), pp.
1032
1044
.
32.
Blomen
,
L. J. M. J.
, and
Murgewa
,
M. N.
, 1993,
Fuel Cell Systems
,
Plenum
,
New York
.
33.
Hirschenhoffer
,
J. H.
,
Stauffer
,
D. B.
,
Engleman
,
R. R.
, and
Klett
,
M. G.
, 1998,
Fuel Cell Handbook
,
4th
ed.,
US-DOE, Office of Fossil Energy, FETC
,
Morgantown, WV
.
34.
Packer
,
J.
, 1992, “
Commercialization of Fuel-Cells for Combined Heat and Power (CHP) Application
,”
J. Power Sources
0378-7753,
37
(
1–2
), pp.
101
109
.
35.
Appleby
,
A. J.
, 1996, “
Issues in Fuel Cell Commercialization
,”
J. Power Sources
0378-7753,
69
, pp.
153
176
.
36.
Kraaij
,
G. J.
,
Rietveld
,
G.
,
Makkus
,
R. C.
, and
Huijsmans
,
J. P. P.
, 1998, “
Development of Second Generation Direct Reforming Molten Carbonate Fuel Cell Stack Technology for Cogeneration Application
,”
J. Power Sources
0378-7753,
71
, pp.
215
217
.
37.
Kortbeek
,
P. J.
, and
Ottervanger
,
R.
, 1998, “
The ‘Advanced DIR-MCFC Development’ Project: An Overview
,”
J. Power Sources
0378-7753,
71
, pp.
223
225
.
38.
Freni
,
S.
,
Aquino
,
M.
, and
Giordano
,
N.
, 1992, “
Mass and Energy Balances in a Molten-Carbonate Fuel Cell With Internal Reforming
,”
J. Power Sources
0378-7753,
39
(
2
), pp.
203
214
.
39.
Riensche
,
E.
,
Meusinger
,
J.
,
Stimming
,
U.
, and
Unverzagt
,
G.
, 1998, “
Optimization of a 200kW SOFC Cogeneration Power Plant. Part II: Variation of the Flow Sheet
,”
J. Power Sources
0378-7753,
71
, pp.
306
314
.
40.
Matsumoto
,
Y.
,
Yokohama
,
R.
, and
Ito
,
K.
, 1994, “
Engineering-Economic Optimization of a Fuel-Cell Cogeneration Plant
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
116
(
1
), pp.
8
14
.
41.
Ito
,
K.
,
Gamou
,
S.
, and
Yokohama
,
R.
, 1998, “
Optimal Unit Sizing of Fuel Cell Cogeneration Systems in Consideration of Performance Degradation
,”
Int. J. Energy Res.
0363-907X,
22
(
12
), pp.
1075
1089
.
42.
Entchev
,
E.
, 2003, “
Residential Fuel Cell Energy Systems Performance Optimization Using “Soft Computing” Techniques
,”
J. Power Sources
0378-7753,
118
, pp.
212
217
.
43.
Kreutz
,
T. G.
, and
Ogden
,
J. M.
, 2000, “
Assessment of Hydrogen-Fueled Proton Exchange Membrane Fuel Cells for Distributed Generation and Cogeneration
,”
Proceedings of the 2000 U. S. DOE Hydrogen Program Review
, Paper No. NREL/CP-570–28890, pp.
1
43
.
44.
Ferguson
,
A.
, and
Ugursal
,
V. I.
, 2004, “
Fuel Cell Modelling for Building Cogeneration Applications
,”
J. Power Sources
0378-7753,
137
(
1
), pp.
30
42
.
45.
Ishihara
,
A.
,
Mitsushima
,
S.
,
Kamyia
,
N.
, and
Ota
,
K.
, 2004, “
Exergy Analysis of Polymer Electrolyte Fuel Cell Systems Using Methanol
,”
J. Power Sources
0378-7753,
126
, pp.
34
40
.
46.
Bedringås
,
K. W.
,
Ertesvåg
,
I. S.
,
Bygstøyl
,
S.
, and
Magnussen
,
B. F.
, 1997, “
Exergy Analysis of Solid-Oxide Fuel-Cell (SOFC) Systems
,”
Energy
0360-5442,
22
(
6
), pp.
403
412
.
47.
Vetter
,
M.
, and
Wittwer
,
C.
, 2002, “
Model-Based Development of Control Strategies for Domestic Fuel Cell Cogeneration Plants
,”
Proceedings of the France-Deutschland Fuel Cell Conference
, Centre Européen de Congrès du Burghof, Forbach, France, Saarbrücken, Germany, Oct., pp.
1
8
.
48.
Braun
,
R. J.
,
Klein
,
S. A.
, and
Reindl
,
D. T.
, 2004, “
Considerations in the Design and Application of Solid Oxide Fuel Cell Energy Systems in Residential Markets
,”
ASHRAE Trans.
0001-2505,
110
, pp.
14
24
.
49.
Scheffler
,
J.
, 2001, “
Operation of Low Voltage Distribution Networks With Decentralised Combined Heat and Power Fuel Cell Systems for Residential Application
,”
IEEE/PES Transmission and Distribution Conference and Exposition
, Oct./Nov., Vol.
2
, pp.
759
763
.
50.
Aki
,
H.
,
Yamamoto
,
S.
,
Kondoh
,
J.
,
Maeda
,
T.
,
Yamaguchi
,
H.
,
Murata
,
A.
,
Ishii
,
I.
, and
Sugimoto
,
I.
, 2004, “
Studies on Energy Networks of Electricity, Heat and Hydrogen for Residential Dwellings Equipped Fuel Cells
,”
Power Engineering Society General Meeting
, IEEE, June, pp.
1923
1927
.
51.
Bizzarri
,
G.
, and
Morini
,
G. L.
, 2004, “
Greenhouse Gas Reduction and Primary Energy Savings Via Adoption of a Fuel Cell Hybrid Plant in a Hospital
,”
Appl. Therm. Eng.
1359-4311,
24
, pp.
383
400
.
52.
Shuying
,
L.
,
Guocai
,
W.
, and
DeLaquil
,
P.
, 2001, “
Biomass Gasification for Combined Heat and Power in Jilin Province
,” People’s Republic of China,
Energy for Sustainable Development
,
5
(
1
), pp.
47
53
.
53.
Williams
,
R. H.
, 2001, “
Toward Zero Emissions From Coal in China
,”
Energy for Sustainable Development
,
5
(
4
), pp.
39
65
.
54.
Van Herle
,
J.
,
Maréchal
,
F.
,
Leuenberger
,
S.
, and
Favrat
,
D.
, 2003, “
Energy Balance Model of a SOFC Cogenerator Operated With Biogas
,”
J. Power Sources
0378-7753,
118
, pp.
375
383
.
55.
Hubert
,
C.
,
Achard
,
P.
, and
Metkemeijer
,
R.
, 2006, “
Study of a Small Heat and Power PEM Fuel Cell System Generator
,”
J. Power Sources
0378-7753,
156
, pp.
64
70
.
56.
Singhal
,
S. C.
, and
Kendall
,
K.
, 2003,
High Temperature Solid Oxide Fuel Cells, Fundamentals, Design and Applications
,
Elsevier
.
57.
Dorer
,
V.
,
Weber
,
R.
, and
Weber
,
A.
, 2005, “
Performance Assessment of Fuel Cell Micro-Cogeneration Systems for Residential Buildings
,”
Energy Build.
0378-7788,
37
, pp.
1132
1146
.
58.
Beausoleil-Morrison
,
I.
,
Schatz
,
A.
,
Maréchal
,
F.
, 2006, “
A Model for Simulating the Thermal and Electrical Production of Small-Scale Solid-Oxide Fuel Cell Cogeneration Systems Within Building Simulation Programs
,”
HVAC&R Res.
1078-9669,
12
(
3
), pp.
641
667
, special issue.
59.
Obara
,
S.
, 2006, “
Dynamic Characteristics of a PEM Fuel Cell for Individual Houses
,”
Int. J. Energy Res.
0363-907X,
30
(
15
), pp.
1278
1294
.
60.
Obara
,
S.
, 2006, “
Load Response Characteristics of a Fuel Cell Micro-Grid With Control of Number of Units
,”
Int. J. Hydrogen Energy
0360-3199,
31
, pp.
1819
1830
.
61.
Obara
,
S.
, 2006, “
Effective-Use Method of Exhaust Heat for Distributed Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
31
, pp.
981
993
.
62.
Obara
,
S.
, 2006, “
The Hot-Water Piping Route of a Fuel Cell Energy Network With a Concentration Installing Method
,”
Int. J. Hydrogen Energy
0360-3199,
31
, pp.
1807
1818
.
63.
Onovwiona
,
H. I.
, and
Ugursal
,
V. I.
, 2006, “
Residential Cogeneration Systems: Review of the Current Technology
,”
Renewable Sustainable Energy Rev.
1364-0321,
10
, pp.
389
431
.
64.
Ghosh
,
S.
, and
De
,
S.
, 2006, “
Energy Analysis of a Cogeneration Plant Using Coal Gasification and Solid Oxide Fuel Cell
,”
Energy
0360-5442,
31
, pp.
345
363
.
65.
Saidi
,
M. H.
,
Abbassi
,
A.
, and
Ehyaei
,
M. A.
, 2005, “
Exergetic Optimization of a PEM Fuel Cell for Domestic Hot Water Heating
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
(
4
), pp.
284
289
.
66.
Tomasi
,
C.
,
Baratieri
,
M.
,
Bosio
,
B.
,
Arato
,
E.
, and
Baggio
,
P.
, 2006, “
Process Analysis of a Molten Carbonate Fuel Cell Power Plant Fed With a Biomass Syngas
,”
J. Power Sources
0378-7753,
157
, pp.
765
774
.
67.
Calì
,
M.
,
Santarelli
,
M. G. L.
, and
Leone
,
P.
, 2006, “
Computer Experimental Analysis of the CHP Performance of a 100kWe SOFC Field Unit by a Factorial Design
,”
J. Power Sources
0378-7753,
156
, pp.
400
413
.
68.
Colella
,
W. G.
,
Niemoth
,
C. R.
,
Lim
,
C. Y.
, and
Hein
,
A. Ph.
, 2005, “
Evaluation of the Financial and Environmental Feasibility of a Network of Distributed 200kWe Combined Heat and Power
,”
Glasg. Math. J.
0017-0895,
5
(
1
), pp.
148
166
.
69.
Allane
,
K.
,
Saari
,
A.
,
Ugursal
,
V. I.
, and
Good
,
J.
, 2006, “
The Financial Viability of an SOFC Cogeneration System in Single-Family Dwellings
,”
J. Power Sources
0378-7753,
158
, pp.
403
416
.
70.
Álvarez
,
T.
,
Valero
,
A.
, and
Montes
,
J. M.
, 2006, “
Thermoeconomic Analysis of a Fuel Cell Hybrid Power System From the Fuel Cell Experimental Data
,”
Energy
0360-5442,
31
, pp.
1358
1370
.
71.
Figueroa
,
R. A.
, and
Otahal
,
J.
, 1998, “
Utility Experience With a 250-kW Molten Carbonate Fuel Cell Cogeneration Power Plant at NAS Miramar, San Diego
,”
J. Power Sources
0378-7753,
71
, pp.
100
104
.
72.
Brenscheidt
,
T.
,
Janowitz
,
K.
,
Dalge
,
H. J.
,
Wendt
,
H.
, and
Brammer
,
F.
, 1998, “
Performance of ONSI PC25 PAFC Cogeneration Plant
,”
Int. J. Hydrogen Energy
0360-3199,
23
(
1
), pp.
53
56
.
73.
Jones
,
A.
, 2003, “
Woking Park: Fuel Cell Combined Heat and Power System
,” Project Report, DOE Award No. DE-FG26–99FT40609, Woking Borough Council, September.
74.
Gigliucci
,
G.
,
Petruzzi
,
L.
,
Cerelli
,
E.
,
Garzisi
,
A.
, and
La Mendola
,
A.
, 2004, “
Demonstration of a Residential CHP System Based on PEM Fuel Cells
,”
J. Power Sources
0378-7753,
131
, pp.
62
64
.
75.
Siqueira
,
C. E. R.
,
Orlando
,
A. F.
,
do Val
,
L. G.
, and
Lama
,
A.
, 2005, “
Experimental Performance Analysis of a 5kW PEMFC Used for Generating Electricity and Hot Water in Co-Generation
,” Pontifícia Universidade Católica do Rio de Janeiro, Department of Mechanical Engineering, Brazil, Internal Report.
76.
Davis
,
W. W.
,
Fanney
,
A. H.
,
LaBarre
,
M. J.
,
Henderson
,
K. R.
, and
Dougherty
,
B. P.
, 2005, “
Parameters Affecting the Performance of a Residential-Scale Stationary Fuel Cell System
,”
Proceedings of FUELCELL 2005, Third International Conference on Fuel Cell Science, Engineering and Technology
, Ypsianti, MI, May 23–25.
77.
ASME
, 2002, PTC 20–2002, Fuel Cell Power Systems Performance, American Society of Mechanical Engineers, New York.
78.
Radulescu
,
M.
,
Lottin
,
O.
,
Feidt
,
M.
,
Lombard
,
C.
,
Le Noc
,
D.
, and
Le Doze
,
S.
, 2006, “
Experimental and Theoretical Analysis of a Natural Gas Cogeneration System Using a Polymer Exchange Membrane Fuel Cell
,”
Chem. Eng. Sci.
0009-2509,
61
, pp.
743
752
.
79.
Radulescu
,
M.
,
Lottin
,
O.
,
Feidt
,
M.
,
Lombard
,
C.
,
Le Noc
, and
D.
,
Le Doze
,
S.
, 2006, “
Experimental Results With a Natural Gas System Using a Polymer Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
159
, pp.
1142
1146
.
80.
Waugaman
,
D. G.
,
Kini
,
A.
, and
Kettleborough
,
C. F.
, 1993, “
A Review of Desiccant Cooling Systems
,”
ASME J. Energy Resour. Technol.
0195-0738,
115
(
1
), pp.
1
8
.
81.
Herold
,
K. E.
, and
Radermarcher
,
R.
, 2002, “
Integrated Power and Cooling Systems for Data Centers
,”
Proceedings of the Inter Society Conference in Thermal Phenomena
, IEEE.
82.
Héteu
,
P. M. T.
, and
Bolle
,
L.
, 2002, “
Economie d’énergie en trigénération (Energy saving with trigeneration)
,”
Int. J. Therm. Sci.
1290-0729,
41
, pp.
1151
1159
.
83.
Srikhirin
,
P.
,
Aphorratana
,
S.
, and
Chungpaibultana
,
S.
, 2001, “
A Review of Absorption Refrigeration Technologies
,”
Renewable Sustainable Energy Rev.
1364-0321,
5
, pp.
343
372
.
84.
Rizy
,
D. T.
,
Zaltash
,
A.
,
Labinov
,
S. D.
,
Petrov
,
A. Y.
, and
Fairchild
,
P.
, 2002, “
Integration of Distributed Energy Resources and Thermally-Activated Technologies
,”
Proceedings of the DistribuTECH Conference
, Miami, February 27–March 1.
85.
Petchers
,
N.
, 2003,
Combined Heating, Cooling and Power Handbook: Technologies and Applications
,
Fairmont
,
Lilburn
.
86.
Erickson
,
D. C.
,
Anand
,
G.
, and
Kyung
,
I.
, 2004, “
Heat-Activated Dual-function Absorption Cycle
,”
ASHRAE Trans.
0001-2505: Symposia,
110
, pp.
515
524
.
87.
Sriovastava
,
N. C.
, and
Eames
,
I. W.
, 1997, “
A Review of Developments in Solid-Vapour Adsorption-Refrigeration and Heat-Pump Systems
,”
J. Inst. Energy
0144-2600,
70
(
485
), pp.
116
127
.
88.
Qu
,
T. F.
,
Wang
,
R. Z.
, and
Wang
,
W.
, 2001, “
Study on Heat and Mass Recovery in Adsorption Refrigeration Cycles
,”
Appl. Therm. Eng.
1359-4311,
21
, pp.
439
452
.
89.
Wilk
,
T.
,
Krolicki
,
Z.
, and
Gajosinski
,
S.
, 2004, “
Performance of a Solid Adsorption Refrigeration System Driven by the Waste Heat of Exhausted Gases
,”
Inzynieria Chemiczna I Procesowa
,
25
(
4
), pp.
2411
2419
.
90.
de Boer
,
R.
,
Haije
,
W. G.
,
Veldhuis
,
J. B. J.
, and
Smeding
,
S. F.
, 2004, “
Solid-Sorption Cooling With Integrated Thermal Storage: The SWEAT Prototype
,”
International Conference on Heat Powered Cycles, HPC 2004
, Larnaca, Cyprus, Aug.
91.
Oshima
,
K.
,
Uekusa
,
T.
,
Ichimura
,
M.
, and
Koyashiki
,
T.
, 1991, “
A Study of Heat Recovery From Fuel Cell Exhaust Gas for Telecommunications Equipment Cooling
,”
13th Telecommunications Energy Conference, INTELEC’91
, Nov. 5–8, pp.
379
386
.
92.
Oshima
,
K.
,
Uekusa
,
T.
,
Ichimura
,
M.
, and
Koyashiki
,
T.
, 1992, “
Heat-Recovery From Fuel-Cell Exhaust-Gas for Cooling Telecommunications Equipment
,”
IEICE Trans. Commun.
0916-8516,
11
, pp.
1119
1125
.
93.
Sutoh
,
I.
,
Oshima
,
K.
, and
Okada
,
R.
, 1993, “
Configuration and Reliability of an Air-Conditioning System for Telecommunications Systems That Uses the Heat Dissipated From Fuel Cells
,”
Proceedings of the 15th International Telecommunications Energy Conference, INTELEC’93
, Sept. 27–30, Vol.
1
, pp.
190
195
.
94.
Waragai
,
S.
,
Uekusa
,
T.
, and
Oshima
,
K.
, 1994, “
Characteristics of an Absorption Refrigerator Driven by Fuel Cell Exhaust Heat and Used for Telecommunications Equipment Cooling
,”
Proceedings of the 16th International Telecommunications Energy Conference, INTELEC’94
, Oct. 30–Nov. 3, pp.
204
210
.
95.
Ishizawa
,
M.
,
Iida
,
S.
,
Abe
,
I.
, and
Uekusa
,
T.
, 1997, “
Heat Recovery and Utilization Technology of Fuel-Cell Systems
,”
NTT Review
,
9
(
5
), pp.
70
75
.
96.
Ishizawa
,
M.
,
Okada
,
S.
, and
Yamashita
,
T.
, 2000, “
Highly Efficient Heat Recovery System for Phosphoric Acid Fuel Cells Used for Cooling Telecommunication Equipment
,”
J. Power Sources
0378-7753,
86
, pp.
294
297
.
97.
Amanuma
,
H.
,
Kuwata
,
Y.
,
Adachi
,
M.
,
Ishizawa
,
M.
, and
Ogata
,
T.
, 2000, “
Field Test of a Fuel-Cell Cogeneration Energy System for Telecommunication Cogeneration Systems
,”
Electronics and Communications in Japan, Part I—Communications
,
83
(
6
), pp.
98
107
.
98.
Kuwata
,
Y.
,
Furubo
,
S.
,
Take
,
T.
, and
Yamashita
,
T.
, 1997, “
Multi-Fuel Fuel-Cell Energy System and Economical Evaluation
,”
NTT Review
,
9
(
5
), pp.
58
64
.
99.
Kuwata
,
Y.
,
Take
,
T.
,
Aoki
,
T.
, and
Ogata
,
T.
, 1998, “
Multifuel Fuel-Cell Energy System for Telecommunications Cogeneration System
,”
IEICE Trans. Commun.
0916-8516,
11
, pp.
2176
2182
.
100.
Silveira
,
J. L.
, and
Gomes
,
L. A.
, 1999, “
Fuel Cell Cogeneration System: A Case of Technoeconomic Analysis
,”
Renewable Sustainable Energy Rev.
1364-0321,
3
, pp.
233
242
.
101.
Liu
,
Y.
, and
Leong
,
K. C.
, 2006, “
Numerical Study of an Internal-Reforming Solid Oxide Fuel Cell and Adsorption Chiller Co-Generation System
,”
J. Power Sources
0378-7753,
159
, pp.
501
508
.
102.
Rizy
,
D. T.
,
Zaltash
,
A.
,
Labinov
,
S. D.
,
Petrov
,
A. Y.
,
Vineyard
,
E. A.
, and
Linkous
,
R. L.
, 2003, “
CHP Integration (or IES): Maximizing the Efficiency of Distributed Generation With Waste Heat Recovery
,”
Proc. Power System Conference
, Oak Ridge National Laboratory, pp.
1
6
.
103.
Parise
,
J. A. R.
, and
Cartwright
,
W. G.
, 1988, “
Experimental Analysis of a Diesel Engine Driven Water-to-Water Heat Pump
,”
Heat Recovery Syst. CHP
0890-4332,
8
(
2
), pp.
75
85
.
104.
Gunes
,
M. B.
, 2001, “
Investigation of a Fuel Cell Based Total Energy System for Residential Applications
,” MS thesis in Mechanical Engineering, Virginia Polytechnic Institute and State University.
105.
Ellis
,
M. W.
,
von Spakovsky
,
M. R.
, and
Nelson
,
D. J.
, 2001, “
Fuel Cell Systems: Efficient, Flexible Energy Conversion for the 21st Century
,”
Proc. IEEE
0018-9219,
89
(
12
), pp.
1808
1818
.
106.
Míguez
,
J. L.
,
Murillo
,
S.
,
Porteiro
,
J.
, and
López
,
L. M.
, 2004, “
Feasibility of a New Domestic CHP Trigeneration With Heat Pump: I. Design and Development
,”
Appl. Therm. Eng.
1359-4311,
24
, pp.
1409
1419
.
107.
Few
,
P. C.
,
Smith
,
M. A.
, and
Twidell
,
J. W.
, 1997, “
Modelling of a Combined Heat and Power (CHP) Plant Incorporating a Heat Pump for Domestic Use
,”
Energy
0360-5442,
22
(
7
), pp.
651
659
.
108.
Smith
,
M. A.
, and
Few
,
P. C.
, 2001, “
Domestic-Scale Combined Heat-and-Power System Incorporating a Heat Pump: Analysis of a Prototype Plant
,”
Appl. Energy
0306-2619,
70
, pp.
215
232
.
109.
Seifert
,
P.
, 2000, “
Rational Supply of Power, Heat and Cooling in Buildings Demonstrated in a Hospital in Dresden
,” DBI Gasund Unwelttechnik GmbH, Final Technical Report, Project No. BU/0065/97.
110.
Archer
,
D. H.
, and
Wimer
,
J. G.
, 1997, “
A Phosphoric Acid Fuel Cell Cogeneration System Retrofit to a Large Office Building
,”
Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference
, Honolulu, USA, Vol.
2
, pp.
817
824
.
111.
Gamou
,
S.
,
Yokoyama
,
R.
, and
Ito
,
K.
, 2002, “
Optimal Unit Sizing of Cogeneration Systems in Consideration of Uncertain Energy Demands as Continuous Random Variables
,”
Energy Convers. Manage.
0196-8904,
43
, pp.
1349
1361
.
112.
Gunes
,
M. B.
, and
Ellis
,
M. W.
, 2003, “
Evaluation of Energy, Environmental, and Economic Characteristics of Fuel Cell Combined Heat and Power Systems for Residential Applications
,”
ASME J. Energy Resour. Technol.
0195-0738,
125
(
3
), pp.
208
220
.
113.
Maidment
,
G. G.
, and
Tozer
,
R. M.
, 2002, “
Combined Cooling Heat and Power in Supermarkets
,”
Appl. Therm. Eng.
1359-4311,
22
, pp.
653
665
.
114.
Georgopoulos
,
N. G.
, 2002, “
Application of a Decomposition Strategy to the Optimal Synthesis/Design Operation of a Fuel Cell Based Total Energy System
,” MS thesis, Mechanical Engineering, Virginia Polytechnic Institute and State University.
115.
Oyarzabal
,
B.
,
von Spakovsky
,
M. R.
, and
Ellis
,
M. W.
, 2004, “
Development of Thermodynamic, Geometric and Economic Models for Use in the Optimal Synthesis/Design of a PEM Fuel Cell Cogeneration System for Multi-Unit Residential Applications
,”
ASME J. Energy Resour. Technol.
0195-0738,
126
(
1
), pp.
21
29
.
116.
Oyarzabal
,
B.
,
von Spakovsky
,
M. R.
, and
Ellis
,
M. W.
, 2004, “
Optimal Systhesis/Design of PEM Fuel Cell Cogeneration System for Multi-Unit Residential Applications: Application of a Decomposition Strategy
,”
ASME J. Energy Resour. Technol.
0195-0738,
126
(
1
), pp.
30
39
.
117.
Burer
,
M.
,
Tanaka
,
K.
,
Favrat
,
D.
, and
Yamada
,
K.
, 2003, “
Multi-Criteria Optimization of a District Cogeneration Plant Integrating a Solid Oxide Fuel Cell-Gas Turbine Combined Cycle, Heat Pumps and Chillers
,”
Energy
0360-5442,
28
, pp.
497
518
.
118.
Weeda
,
M.
,
van der Laag
,
P.
,
Ruijg
,
G. J.
,
Haije
,
W.
,
Smeding
,
S.
, and
Kramer
,
G. J.
, 2002, “
Combined Cooling Heat and Power Generation: Techno-Economic Assessment of Integrated Fuel Cell and Sorption Heat Pump Systems
,” ECN Clean Fossil Fuels, ECN Project No. 7.2915, Energy-Saving Through Innovation Programme Contract No. EDI01180 funded by Senter.
119.
Eriksson
,
O.
, 2003, “
Environmental and Economic Assessment of Swedish Municipal Solid Waste Management in a Systems Perspective
,” Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden.
120.
Minott
,
S. J.
, 2002, “
Feasibility of Fuel Cells for Energy Conversion on the Dairy Farm
,” MS thesis, Cornell University.
121.
Henderick
,
P.
, and
Williams
,
R. H.
, 2000, “
Trigeneration in a Northern Chinese Village Using Crop Residues
,”
Energy for Sustainable Development
,
4
(
3
), pp.
26
42
.
122.
Kowalski
,
G. J.
, and
Zenouzi
,
M.
, 2006, “
Selection of Distributed Power-Generation Systems Based on Electric, Heating, and Cooling Loads
,”
ASME J. Energy Resour. Technol.
0195-0738,
128
(
3
), pp.
168
178
.
123.
Weber
,
C.
,
Koyama
,
M.
, and
Kraines
,
S.
, 2006, “
CO2-Emissions Reduction Potential and Costs of a Decentralized Energy System for Providing Electricity, Cooling and Heating in an Office-Building in Tokyo
,”
Energy
0360-5442,
31
, pp.
3041
3061
.
124.
Yamanaka
,
I.
,
Akimoto
,
T.
, and
Otsuka
,
K.
, 1994, “
Gas-Phase Oxidation of Benzene to Phenol and Hydroquinone by Using an H2-O2 Fuel-Cell System
,”
Electrochim. Acta
0013-4686,
39
(
17
), pp.
2545
2549
.
125.
Malhotra
,
S.
, and
Datta
,
R.
, 1996, “
Feasibility Studies of a Fuel Cell for Cogeneration of Homogeneously Catalyzed Acetaldehyde and Electricity From Ethanol
,”
J. Electrochem. Soc.
0013-4651,
143
(
10
), pp.
3058
3065
.
126.
Granovskii
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
, 2006, “
Application of Oxygen Ion-Conductive Membranes for Simultaneous Electricity and Hydrogen Generation
,”
Chem. Eng. Sci.
0009-2509,
120
, pp.
193
202
.
127.
Casanova
,
A.
, 1998, “
A Consortium Approach to Commercialized Westinghouse Solid Oxide Fuel Cell Technology
,”
J. Power Sources
0378-7753,
71
, pp.
65
70
.
You do not currently have access to this content.