Hydrogen is often considered to be the ultimate energy source for vehicles. However, if hydrogen is to fuel practical vehicles, then the development of fuel cell and hydrogen fueled engine technology must be accompanied by significant improvements in hydrogen storage techniques. Compressed hydrogen storage tanks, liquid hydrogen storage tanks, and containment systems for hydrides are examined to compare their advantages, disadvantages, and potential for onboard and stationary hydrogen storage systems. Each technique reviewed possesses specific shortcomings; thus, none can adequately satisfy the requirements of a hydrogen based economy.

1.
United States Department of Energy
, 2004, Hydrogen Posture Plan: An Integrated Research, Development, and Demonstration Plan.
2.
Sandi
,
G.
, 2004, “
Hydrogen Storage and Its Limitations
,”
Electrochem. Soc. Interface
1064-8208,
13
, pp.
40
44
.
3.
Collage of the Desert
, 2001, “
Hydrogen Properties
,” Hydrogen Fuel Cell Engines and Related Technologies Report.
4.
Schlapbach
,
L.
, and
Züttel
,
A.
, 2001, “
Hydrogen-Storage Materials for Mobile Applications
,”
Nature (London)
0028-0836,
414
, pp.
353
358
.
5.
Aceves
,
S. M.
, and
Berry
,
G. D.
, 1998, “
Thermodynamics of Insulated Pressure Vessels for Vehicular Hydrogen Storage
,”
ASME J. Energy Resour. Technol.
0195-0738,
120
, pp.
137
142
.
6.
Wozniak
,
J.
, 2003, “
Development of a Compressed Hydrogen Gas Integrated Storage System (CH2-ISS) for Fuel Cell Vehicles
,” Hydrogen, Fuel Cells, and Infrastructure Technologies, FY 2003 Progress Report.
7.
DOE
, 2006, “
Hydrogen Program Goal-Setting Methodologies
,” Report No. ESECS EE-4015.
8.
USCAR
, 2002,
Proceedings of the Workshop on Compressed and Liquefied Hydrogen Storage
.
9.
Yoo
,
E.
,
Gao
,
L.
,
Komatsu
,
T.
,
Yagai
,
N.
,
Arai
,
K.
,
Yamazaki
,
T.
, and
Matsuishi
,
K.
, 2004, “
Atomic Hydrogen Storage in Carbon Nanotubes Promoted by Metal Catalysts
,”
J. Phys. Chem. B
1089-5647,
108
(
49
), pp.
18903
18907
.
10.
Lawrence
,
J.
, and
Xu
,
G.
, 2004, “
High Pressure Saturation of Hydrogen Stored by Single-Wall Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
84
(
6
), pp.
918
920
.
11.
Dillon
,
A. C.
,
Gilbert
,
K. E. H.
,
Parilla
,
P. A.
,
Horbacewicz
,
C.
,
Alleman
,
J. L.
,
Jones
,
K. M.
, and
Heben
,
M. J.
, 2003, “
Hydrogen Storage in Carbon Single-Wall Nanotubes
,” Hydrogen, Fuel Cells, and Infrastructure Technologies, FY 2003 Progress Report.
12.
Zidan
,
R.
,
Rao
,
A. M.
, and
Au
,
M.
, 2003, “
Doped Carbon Nanotubes for Hydrogen Storage, Hydrogen, Fuel Cells, and Infrastructure Technologies
,” FY 2003 Progress Report.
13.
Ahn
,
C.
, 2003, “
Hydrogen Storage in Metal-Modified Single-Walled Carbon Nanotubes
,” Hydrogen, Fuel Cells, and Infrastructure Technologies, FY 2003 Progress Report.
14.
Kajiura
,
H.
,
Tsutsui
,
S.
,
Kadono
,
K.
,
Kakuta
,
M.
, and
Ata
,
M.
, 2003, “
Hydrogen Storage Capacity of Commercially Available Carbon Materials at Room Temperature
,”
Appl. Phys. Lett.
0003-6951,
82
(
7
), pp.
1105
1107
.
15.
Liu
,
C.
,
Yang
,
Q. H.
,
Tong
,
Y.
,
Cong
,
H. T.
, and
Cheng
,
H. M.
, 2002, “
Volumetric Hydrogen Storage in Single-Walled Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
80
(
13
), pp.
2389
2391
.
16.
Lee
,
S. M.
,
An
,
K. H.
,
Lee
,
Y. H.
,
Seifert
,
G.
, and
Fraunheim
,
T.
, 2001, “
A Hydrogen Storage Mechanism in Single-Walled Carbon Nanotubes
,”
J. Am. Chem. Soc.
0002-7863,
123
, pp.
5059
5063
.
17.
Quintel
,
A.
, 2000, “
Report on the Evening Discussion: Hydrogen Storage in Carbon Materials
,”
AIP Conf. Proc.
0094-243X,
544
, pp.
537
546
.
18.
Hibbeler
,
R. C.
, 2000,
Mechanics of Materials
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
19.
Lubin
,
G.
, 1982,
Handbook of Composites
,
Van Nostrand Reinhold
,
New York
.
20.
Züttel
,
A.
, 2003, “
Materials for Hydrogen Storage
,”
Mater. Today
1369-7021,
6
, pp.
24
33
.
21.
Lessing
,
P. A.
, 2003, “
Low Permeation Liner for Hydrogen Gas Storage Tanks
,” Hydrogen, Fuel Cells, and Infrastructure Technologies, FY 2003 Progress Report.
22.
Colozza
,
A. J.
, 2002, “
Hydrogen Storage for Aircraft Applications Overview
,” Report No. NASA/CR-211867.
23.
Suresh
,
S.
, 1998,
Fatigue of Materials
,
2nd ed.
,
Cambridge University Press
,
Cambridge, England
.
24.
Troiano
,
E.
,
Vigilante
,
G. N.
, and
Underwood
,
J. H.
, 2002, “
Experiences and Modeling of Hydrogen Cracking in a Thick-Walled Pressure Vessel
,”
Fatigue and Fracture Mechanics
, Vol.
33
, ASTM STP 1417, American Society for Testing and Materials, West Conshohocken, PA.
25.
NASA/MSFC
, “
Hydrogen Resistant Alloy
,” NASA Patent Application No. 08/248611, pending.
26.
Kohno
,
T.
, 1998,
Conformal Field Theory and Topology
,
Translation of Mathematical Monographs
, Vol.
210
, Iwanami Series in Modern Mathematics,
American Mathematical Society
,
Providence RI
.
27.
Schüth
,
F.
,
Bogdanovic
,
B.
, and
Felderhoff
,
M.
, 2004, “
Light Metal Hydrides and Complex Hydrides for Hydrogen Storage
,”
Chem. Commun. (Cambridge)
1359-7345,
2004
, pp.
2249
2258
.
28.
Sirosh
,
N.
,
Corbin
,
R.
, and
Niedzwiecki
,
A.
, 2003, “
Hydrogen Composite Tank Project, Hydrogen
,” Fuel Cells, and Infrastructure Technologies, FY 2003 Progress Report.
29.
Quin
,
S.
, and
Widera
,
G. E. O.
, 1996, “
Use of Stress-Strength Model in Determination of Safety Factor for Pressure Vessel Design
,”
ASME J. Pressure Vessel Technol.
0094-9930,
118
, pp.
27
32
.
30.
Fermilab ES&H Manual, 1995, Guidelines for the Design, Review and Approval of Liquid Cryogenic Targets.
31.
Aceves
,
S. M.
, 2003, “
Hydrogen Storage in Insulated Pressure Vessels
,” Hydrogen, Fuel Cells, and Infrastructure Technologies, FY 2003 Progress Report.
32.
Wolf
,
J.
, 2002, “
Liquid-Hydrogen Technology for Vehicles
,”
MRS Bull.
0883-7694,
27
, pp.
684
687
.
33.
Irani
,
R. S.
, 2002, “
Hydrogen Storage: High-Pressure Gas Containment
,”
MRS Bull.
0883-7694,
27
, pp.
680
682
.
34.
Reijerkerk
,
C. J. J.
, 2004, “
Potential of Cryogenic Hydrogen Storage in Vehicles
,”
Alternative Fuels
,
Linde AG
,
Hoellriegelskreuth, Germany
.
35.
Haberbusch
,
M. S.
,
Stochl
,
R. J.
, and
Culler
,
A. J.
, 2004, “
Thermally Optimized Zero Boil-off Densified Cryogen Storage System for Space
,”
Cryogenics
0011-2275,
44
, pp.
485
491
.
36.
Hasan
,
M. M.
,
Lin
,
C. S.
, and
Van Dresar
,
N. T.
, 1991, “
Self-Pressurization of a Flightweight Liquid Hydrogen Storage Tank Subjected to Low Heat Flux
,”
Cryogenic Heat Transfer
,
ASME
,
New York
, Vol.
167
.
37.
Sciver
,
S. W. V.
, 1986,
Helium Cryogenics
,
Plenum
,
New York
.
38.
Peschka
,
W.
, 1992,
Liquid Hydrogen: Fuel of the Future
,
Springer-Verlag
,
New York
.
39.
Gadre
,
S. A.
,
Ebner
,
A. D.
,
Al-Muhtaseb
,
S. A.
, and
Ritter
,
J. A.
, 2003, “
Practical Modeling of Metal Hydride Hydrogen Storage Systems
,”
Ind. Eng. Chem. Res.
0888-5885,
42
, pp.
1713
1722
.
40.
Esayed
,
A. Y.
, 2000, “
Development of Novel Intermetallic Compounds and Solid Solution Systems as Hydrogen Storage Devices
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
214
, pp.
669
676
.
41.
Kojima
,
Y.
, and
Kawai
,
Y.
, 2004, “
Hydrogen Storage of Metal Nitride by a Mechanochemical Reaction
,”
Chem. Commun. (Cambridge)
1359-7345,
2004
, pp.
2210
2211
.
42.
Gross
,
K. J.
,
Luo
,
W.
,
Majzoub
,
E.
,
Roberts
,
G.
,
Spangler
,
S.
,
Dedrick
,
D.
,
Johnson
,
T.
, and
Chan
,
J.
, 2003, “
Hydride Development for Hydrogen Storage
,” Hydrogen, Fuel Cells, and Infrastructure Technologies, FY 2003 Progress Report.
43.
Bogdanovic
,
B.
, and
Schwickardi
,
M.
, 1997, “
Ti-doped Alkali Metal Aluminium Hydrides as Potential Novel Reversible Hydrogen Storage Materials
,”
J. Alloys Compd.
0925-8388,
253–254
, pp.
1
9
.
44.
Esayed
,
A. Y.
, 2001, “
Metal Hydrides
,”
Energy Sources
0090-8312,
23
, pp.
257
265
.
45.
Zhou
,
L.
, 2005, “
Progress and Problems in Hydrogen Storage Methods
,”
Renewable Sustainable Energy Rev.
1364-0321,
9
, pp.
395
408
.
46.
Morinaga
,
M.
,
Yukawa
,
H.
,
Nakatsuka
,
K.
, and
Takagi
,
M.
, 2002, “
Roles of Constituent Elements and Design of Hydrogen Storage Alloys
,”
J. Alloys Compd.
0925-8388,
330–332
, pp.
20
24
.
47.
Aoki
,
M.
,
Ohba
,
N.
,
Noritake
,
T.
, and
Towata
,
S.
, 2004, “
Reversible Hydriding and Dehydriding Properties of CaSi: Potential of Metal Silicides for Hydrogen Storage
,”
Appl. Phys. Lett.
0003-6951,
85
(
3
), pp.
387
388
.
48.
Zaluska
,
A.
,
Zaluski
,
L.
, and
Ström-Olsen
,
J. O.
, 2001, “
Structure, Catalysis and Atomic Reactions on the Nano-Scale: A Systematic Approach to Metal Hydrides for Hydrogen Storage
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
72
, pp.
157
165
.
49.
Kircher
,
O.
, and
Fichtner
,
M.
, 2004, “
Hydrogen Exchange Kinetics in NaAlH4 Catalyzed in Different Decomposition States
,”
J. Appl. Phys.
0021-8979,
95
(
12
), pp.
7748
7753
.
50.
Walters
,
R. T.
, and
Scogin
,
J. H.
, 2004, “
A Reversible Hydrogen Storage Mechanism for Sodium Alanate: The Role of Alanes and the Catalytic Effect of the Dopant
,”
J. Alloys Compd.
0925-8388,
379
, pp.
135
142
.
51.
Anton
,
D. L.
,
Opalka
,
S. M.
, and
Moser
,
D. A.
, 2003, “
High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides
,” Hydrogen, Fuel Cells, and Infrastructure Technologies, FY 2003 Progress Report.
52.
Andrei
,
C. M.
,
Walmsley
,
J. C.
,
Brinks
,
H. W.
,
Holmestad
,
R.
,
Srinivasan
,
S. S.
,
Jensen
,
C. M.
, and
Hauback
,
B. C.
, 2005, “
Electron-Microscopy Studies of NaAlH4 With TiF3 Additive: Hydrogen-Cycling Effects
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
80
, pp.
709
715
.
53.
Slattery
,
D. K.
, and
Hampton
,
M. D.
, 2003, “
Complex Hydrides for Hydrogen Storage
,” Hydrogen, Fuel Cells, and Infrastructure Technologies, FY 2003 Progress Report.
54.
Jensen
,
C. M.
,
Sun
,
D.
,
Srinivasan
,
S.
,
Wang
,
P.
,
Muphy
,
K.
,
Wang
,
Z.
,
Eberhard
,
M.
,
Naghipour
,
A.
,
Linzi
,
J.
, and
Niemczura
,
W.
, 2003, “
Catalytically Enhanced Hydrogen Storage Systems
,” Hydrogen, Fuel Cells, and Infrastructure Technologies, FY 2003 Progress Report.
55.
Gomes
,
S.
,
Renaudin
,
G.
,
Hagemann
,
H.
,
Yvon
,
K.
,
Sulic
,
M. P.
, and
Jensen
,
C. M.
, 2005, “
Effects of Milling, Doping and Cycling of NaAlH4 Studied by Vibrational Spectroscopy and X-Ray Diffraction
,”
J. Alloys Compd.
0925-8388,
390
, pp.
305
313
.
57.
Genma
,
R.
,
Uchida
,
H. H.
,
Okada
,
N.
, and
Nishi
,
Y.
, 2003, “
Hydrogen Reactivity of Li-Containing Hydrogen Storage Materials
,”
J. Alloys Compd.
0925-8388,
356–357
, pp.
358
362
.
58.
Pinkerton
,
F. E.
,
Meisner
,
G. P.
,
Meyer
,
M. S.
,
Balogh
,
M. P.
, and
Kundrat
,
M. D.
, 2005, “
Hydrogen Desorption Exceeding Ten Weight Percent from the New Quaternary Hydride Li3BN2H8
,”
J. Phys. Chem. B
1089-5647,
109
, pp.
6
-
8
.
59.
Takeichi
,
N.
,
Senoh
,
H.
,
Yokota
,
T.
,
Tsurata
,
H.
,
Hamada
,
K.
,
Takeshita
,
H. T.
,
Tanaka
,
H.
,
Kiyobayashi
,
T.
,
Takano
,
T.
, and
Kuriyama
,
N.
, 2003, “
Hybrid Hydrogen Storage Vessel, a Novel High-Pressure Hydrogen Storage Vessel Combined With Hydrogen Storage Material
,”
Int. J. Hydrogen Energy
0360-3199,
28
, pp.
1121
1129
.
You do not currently have access to this content.