Since sulfur compounds are the major poisons of fuel cell systems, equilibrium concentrations of minor sulfur-based impurities in fuel cell fuels are thermochemically calculated in the temperature range between 400°C and 1000°C. As sulfur-based impurities in fuel cell gases, H2S(g), elementary sulfur, inorganic sulfur compounds, mercaptans, alkyl (di-)sulfides, thiophenes, and related compounds have been taken into account. Various types of fuels are also considered, including H2, H2CO, CO, CH4, biogas, liquidified petroleum gas, gasoline, kerosene, and diesel fuel. Among the 21 kinds of sulfur-based typical impurities considered, H2S(g) is the most stable sulfur-based species. COS(g) can also coexist, but even in CO-rich gases and in hydrocarbon-based fuels, COS concentration in equilibrium is one order or a few orders of magnitude lower than H2S concentration. Other sulfur compounds, such as CH4S(g) at intermediate temperatures and HS(g) and SO2(g) at high temperatures, are also expected to coexist but their concentrations are less than 1ppb (parts per billion) assuming thermochemical equilibrium.

1.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
West Sussex, UK
.
2.
International Organization for Standardization
(ISO), 2004, “
Hydrogen Fuel—Product Specification—Part 2: PEM fuel Cell Applications for Road Vehicles
,” Technical Specification ISO/PDTS 14687-2.
3.
Singhal
,
S. C.
, and
Kendall
,
K.
, 2003,
High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
,
Oxford
.
4.
Minh
,
N. Q.
, and
Takahashi
,
T.
, 1995,
Science and Technology of Ceramic Fuel Cells
,
Elsevier Science B. V.
,
Amsterdam, Netherlands
.
5.
Sasaki
,
K.
,
Watanabe
,
K.
,
Shiosaki
,
K.
,
Susuki
,
K.
, and
Teraoka
,
Y.
, 2004, “
Multi-Fuel Capability of Solid Oxide Fuel Cells
,”
J. Electroceram.
1385-3449,
13
, pp.
669
675
.
6.
Maier
,
J.
, 2004,
Physical Chemistry of Ionic Materials: Ions and Electrons in Solids
,
Wiley
,
West Sussex, UK
.
7.
Matsuzaki
,
Y.
, and
Yasuda
,
I.
, 2000, “
The Poisoning Effect of Sulfur-Containing Impurity Gas on a SOFC Anode: Part I. Dependence on Temperature, Time, and Impurity Concentration
,”
Solid State Ionics
0167-2738,
132
(
3–4
), pp.
261
269
.
8.
Sasaki
,
K.
,
Susuki
,
K.
,
Iyoshi
,
A.
,
Uchimura
,
M.
,
Imamura
,
N.
,
Kusaba
,
H.
,
Teraoka
,
Y.
,
Fuchino
,
H.
,
Tsujimoto
,
K.
,
Uchida
,
Y.
, and
Jingo
,
N.
, 2005, “
Sulfur Tolerance of Solid Oxide Fuel Cells
,”
Proceedings of Ninth International Symposium Solid Oxide Fuel Cells
,
Electrochemical Society
, Vol.
2005-07
, pp.
1267
1274
.
9.
Sasaki
,
K.
,
Susuki
,
K.
,
Iyoshi
,
A.
,
Uchimura
,
M.
,
Imamura
,
N.
,
Kusaba
,
H.
,
Teraoka
,
Y.
,
Fuchino
,
H.
,
Tsujimoto
,
K.
,
Uchida
,
Y.
, and
Jingo
,
N.
, 2006, “
H2S Poisoning of Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
153
(
11
), pp.
A2023
A2029
.
10.
Rostrup-Nielsen
,
J. R.
,
Hansen
,
J. B.
,
Helveg
,
S.
,
Christiansen
,
N.
, and
Jannasch
,
A. K.
, 2006, “
Sites for Catalysis and Electrochemistry in Solid Oxide Fuel Cell (SOFC) Anode
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
85
(
4
), pp.
427
430
.
11.
Sasaki
,
K.
,
Adachi
,
S.
,
Haga
,
K.
,
Uchikawa
,
M.
,
Yamamoto
,
J.
,
Iyoshi
,
A.
,
Chou
,
J.-T.
,
Shiratori
,
Y.
, and
Itoh
,
K.
, 2007, “
Fuel Impurity Tolerance of Solid Oxide Fuel Cells
,”
ECS Trans.
,
7
(
1
), pp.
1675
1683
.
12.
Mukerjee
,
S.
,
Haltiner
,
K.
,
Kerr
,
R.
,
Chick
,
L.
,
Sprenkle
,
V.
,
Meinhardt
,
K.
,
Lu
,
C.
,
Kim
,
J. Y.
, and
Weil
,
K. S.
, 2007, “
Solid Oxide Fuel Cell Development: Latest Results
,”
ECS Trans.
,
7
(
1
), pp.
59
65
.
13.
Zha
,
S. W.
,
Cheng
,
Z.
, and
Liu
,
M. L.
, 2007, “
Sulfur Poisoning and Regeneration of Ni-Based Anodes in Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
154
(
2
), pp.
B201
B206
.
14.
Lobachyov
,
K.
, and
Richter
,
H. J.
, 1996, “
Combined Cycle Gas Turbine Power Plant With Coal Gasification and Solid Oxide Fuel Cell
,”
ASME J. Energy Resour. Technol.
0195-0738,
118
(
4
), pp.
285
292
.
15.
Shoko
,
E.
,
McLellan
,
B.
,
Dicks
,
A. L.
, and
Diniz da Costa
,
J. C.
, 2006, “
Hydrogen From Coal: Production and Utilisation Technologies
,”
Int. J. Coal Geol.
0166-5162,
65
(
3–4
), pp.
213
222
.
16.
Komiyama
,
N.
,
Sasatsu
,
H.
,
Kougami
,
K.
, and
Iritani
,
J.
, 2001, “
Influence of the Impurities (H2S) in a Coal Synthesis Gas for SOFC Cell Performance
,”
Proceedings of Tenth Symposium SOFC Society Japan
,
SOFC Society of Japan
,
Tokyo
, pp.
59
62
.
17.
Staniforth
,
J.
, and
Kendall
,
K.
, 2000, “
Cannock Landfill Gas Powering a Small Tubular Solid Oxide Fuel Cell—A Case Study
,”
J. Power Sources
0378-7753,
86
(
1–2
), pp.
401
403
.
18.
Devianto
,
H.
,
Yoon
,
S. P.
,
Nam
,
S. W.
,
Han
,
J.
, and
Lim
,
T. H.
, 2006, “
The Effect of a Ceria Coating on the H2S Tolerance of a Molten Carbonate Fuel Cell
,”
J. Power Sources
0378-7753,
159
(
2
), pp.
1147
1152
.
19.
Swider
,
K. E.
, and
Rolison
,
D. R.
, 1996, “
The Chemical State of Sulfur in Carbon-Supported Fuel-Cell Electrodes
,”
J. Electrochem. Soc.
0013-4651,
143
(
3
), pp.
813
819
.
20.
Campbell
,
T. J.
,
Shaaban
,
A. H.
,
Holcomb
,
F. H.
,
Salavani
,
R.
, and
Binder
,
M. J.
, 2004, “
JP-8 Catalytic Cracking for Compact Fuel Processors
,”
J. Power Sources
0378-7753,
129
(
1
), pp.
81
89
.
21.
Lombard
,
C.
,
Le Doze
,
S.
,
Marencak
,
E.
,
Marquaire
,
P.-M.
,
Le Noc
,
D.
,
Bertrand
,
G.
, and
Lapicque
,
F.
, 2006, “
In Situ Regeneration of the Ni-Based Catalytic Reformer of a 5kW PEMFC System
,”
Int. J. Hydrogen Energy
0360-3199,
31
(
3
), pp.
437
440
.
22.
Chase
,
M.
, 1998,
NIST-JANAF Thermochemical Tables
(Journal of Physical and Chemical Reference Data, Monograph No. 9),
4th ed.
,
American Chemical Society and NIST
,
New York
.
23.
Barin
,
I.
, 1989,
Thermochemical Data of Pure Substances
,
VCH Verlags Gesellschaft
,
Weinheim, Germany
.
24.
Barin
,
I.
, 1993,
Thermochemical Data of Pure Substances
,
VCH Verlags Gesellschaft
,
Weinheim, Germany
.
25.
Frenkel
,
M.
,
Kabo
,
G. J.
,
Marsh
,
K. N.
,
Roganov
,
G. N.
, and
Wilhoit
,
R. C.
, 1994,
Thermodynamics of Organic Compounds in the Gas State
,
Thermodynamics Research Center, The Texas, A&M University System
,
TX
.
26.
Dinsdale
,
A.
, 1999,
Thermodynamic Properties of Inorganic Materials (Landolt-Börnstein)
,
Springer-Verlag
,
Berlin-Heidelberg
.
27.
Knacke
,
O.
,
Kubaschewski
,
O.
, and
Hesselman
,
K.
, 1991,
Thermochemical Properties of Inorganic Substances
,
2nd ed.
,
Springer
,
Berlin
.
28.
Domalski
,
E. S.
, and
Hearing
,
E. D.
, 1993, “
Estimation of the Thermodynamic Properties of C–H–N–O–S–Halogen Compounds at 298.15K
,”
J. Phys. Chem. Ref. Data
0047-2689,
22
, pp.
805
1159
.
29.
Sasaki
,
K.
, and
Teraoka
,
Y.
, 2003, “
Equilibria in Fuel Cell Gases: I. Equilibrium Compositions and Reforming Conditions
,”
J. Electrochem. Soc.
0013-4651,
150
(
7
), pp.
A878
A884
.
30.
Sasaki
,
K.
, and
Teraoka
,
Y.
, 2003, “
Equilibria in Fuel Cell Gases: II. The C–H–O Ternary Diagrams
,”
J. Electrochem. Soc.
0013-4651,
150
(
7
), pp.
A885
A888
.
31.
Haga
,
K.
,
Adachi
,
S.
,
Shiratori
,
Y.
,
Itoh
,
K.
, and
Sasaki
,
K.
, 2008, “
Poisoning of SOFC Anodes by Various Fuel Impurities
,”
Solid State Ionics
, in press (doi: ).
You do not currently have access to this content.