A three-dimensionally ordered macroporous (3DOM) Ni–yttria stabilized zirconia (YSZ) anode with a YSZ thin electrolyte layer was developed by a colloidal crystal templating method in order to lower the operating temperature of solid oxide fuel cells due to a high and uniform electrochemical interface that originated from a 3DOM structure. In the present study, 2μm polystyrene beads were used as the template. The anode structure was strongly influenced by the pH of the suspension, and it was optimized to 1.8 according to the zeta-potential measurement and scanning electron microscope observation. The 3DOM anode and thin electrolyte layer were simultaneously formed by sintering the deposit that was obtained by filtering two kinds of suspensions by turns. Here, we successfully obtained a 3DOM anode with high porosity of 72% and a 3μm thin YSZ layer on it, which was favorable in reducing both electrolyte and polarization resistances.

1.
Minh
,
N. Q.
, 1993, “
Ceramic Fuel Cells
,”
J. Am. Ceram. Soc.
0002-7820,
76
(
3
), pp.
563
588
.
2.
Yang
,
Z.
,
Weil
,
K. S.
,
Paxton
,
D. M.
, and
Stevenson
,
J. W.
, 2003, “
Selection and Evaluation of Heat-Resistant Alloys for SOFC Interconnect Applications
,”
J. Electrochem. Soc.
0013-4651,
150
(
9
), pp.
A1188
A1201
.
3.
Zhu
,
W. Z.
, and
Deevi
,
S. C.
, 2003, “
Opportunity of Metallic Interconnects for Solid Oxide Fuel Cells: A Status on Contact Resistance
,”
Mater. Res. Bull.
0025-5408,
38
(
6
), pp.
957
972
.
4.
Ishihara
,
T.
,
Tabuchi
,
J.
,
Ishikawa
,
S.
,
Yan
,
J.
,
Enoki
,
M.
, and
Matsumoto
,
H.
, 2006, “
Recent Progress in LaGaO3 Based Solid Electrolyte for Intermediate Temperature SOFCs
,”
Solid State Ionics
0167-2738,
177
(
19–25
), pp.
1949
1953
.
5.
Ishihara
,
T.
,
Honda
,
M.
,
Shibayama
,
T.
,
Nishiguchi
,
H.
, and
Takita
,
Y.
, 1998, “
Intermediate Temperature Solid Oxide Fuel Cells Using a New LaGaO3 Based Oxide Ion Conductor
,”
J. Electrochem. Soc.
0013-4651,
145
(
9
), pp.
3177
3183
.
6.
Eguchi
,
K.
,
Setoguchi
,
T.
,
Inoue
,
T.
, and
Arai
,
H.
, 1992, “
Electrical Properties of Ceria-Based Oxides and Their Application to Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
52
(
1–3
), pp.
165
172
.
7.
Steele
,
B. C. H.
, and
Heinzel
,
A.
, 2001, “
Materials for Fuel-Cell Technologies
,”
Nature (London)
0028-0836,
414
(
6861
), pp.
345
352
.
8.
Jung
,
H. Y.
,
Hong
,
K.-S.
,
Jung
,
H.-G.
,
Kim
,
H.
,
Kim
,
H.-R.
,
Son
,
J.-W.
,
Kim
,
J.
,
Lee
,
H.-W.
, and
Lee
,
J.-H.
, 2007, “
SOFCs With Sc-Doped Zirconia Electrolyte and Co-Containing Perovskite Cathodes
,”
J. Electrochem. Soc.
0013-4651,
154
(
5
), pp.
B480
B485
.
9.
Badwal
,
S. P. S.
,
Ciacchi
,
F. T.
, and
Milosevic
,
D.
, 2000, “
Scandia-Zirconia Electrolytes for Intermediate Temperature Solid Oxide Fuel Cell Operation
,”
Solid State Ionics
0167-2738,
136–137
, pp.
91
99
.
10.
Xia
,
C.
,
Rauch
,
W.
,
Chen
,
F.
, and
Liu
,
M.
, 2002, “
Sm0.5Sr0.5CoO3 Cathodes for Low-Temperature SOFCs
,”
Solid State Ionics
0167-2738,
149
(
1–2
), pp.
11
19
.
11.
Hibino
,
T.
,
Hashimoto
,
A.
,
Inoue
,
T.
,
Tokuno
,
J.
,
Yoshida
,
S.
, and
Sano
,
M.
, 2000, “
A Low-Operating-Temperature Solid Oxide Fuel Cell in Hydrocarbon-Air Mixtures
,”
Science
0036-8075,
288
(
5473
), pp.
2031
2033
.
12.
Wei
,
B.
,
,
Z.
,
Li
,
S. Y.
,
Liu
,
Y. Q.
,
Liu
,
K. Y.
, and
Su
,
W. H.
, 2005, “
Thermal and Electrical Properties of New Cathode Material Ba0.5Sr0.5Co0.8Fe0.2O3−δ for Solid Oxide Fuel Cells
,”
Electrochem. Solid-State Lett.
1099-0062,
8
(
8
), pp.
A428
A431
.
13.
Shao
,
Z.
, and
Halle
,
S. M.
, 2004, “
A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells
,”
Nature (London)
0028-0836,
431
(
7005
), pp.
170
173
.
14.
Will
,
J.
,
Mitterdorfer
,
A.
,
Kleinlogel
,
C.
,
Perednis
,
D.
, and
Gauckler
,
L. J.
, 2000, “
Fabrication of Thin Electrolytes for Second-Generation Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
131
(
1
), pp.
79
96
.
15.
Joshi
,
A. S.
,
Grew
,
K. N.
,
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
, 2007, “
Lattice Boltzmann Modeling of 2D Gas Transport in A Solid Oxide Fuel Cell Anode
,”
J. Power Sources
0378-7753,
164
(
2
), pp.
631
638
.
16.
Williford
,
R. E.
,
Chick
,
L. A.
,
Maupin
,
G. D.
,
Simner
,
S. P.
, and
Stevenson
,
J. W.
, 2003, “
Diffusion Limitations in the Porous Anodes of SOFCs
,”
J. Electrochem. Soc.
0013-4651,
150
(
8
), pp.
A1067
A1072
.
17.
Kanamura
,
K.
,
Mitsui
,
T.
, and
Munakata
,
H.
, 2005, “
Preparation of Composite Membrane Between a Uniform Porous Silica Matrix and Injected Proton Conductive Gel Polymer
,”
Chem. Mater.
0897-4756,
17
(
19
), pp.
4845
4851
.
18.
Munakata
,
H.
,
Yamamoto
,
D.
, and
Kanamura
,
K.
, 2005, “
Properties of Composite Proton-Conducting Membranes Prepared From Three-Dimensionally Ordered Macroporous Polyimide Matrix and Polyelectrolyte
,”
Chem. Commun. (Cambridge)
1359-7345,
2005
(
31
), pp.
3986
3988
.
19.
Yamada
,
Y.
,
Sakamoto
,
T.
,
Gu
,
S.
, and
Konno
,
M.
, 2005, “
Soap-Free Synthesis for Producing Highly Monodisperse, Micrometer-Sized Polystyrene Particles up to 6μm
,”
J. Colloid Interface Sci.
0021-9797,
281
(
1
), pp.
249
252
.
20.
Wang
,
J.
, and
Gao
,
L.
, 2000, “
Surface and Electrokinetic Properties of Y-TZP Suspensions Stabilized by Polyelectrolytes
,”
Ceram. Int.
0272-8842,
26
(
2
), pp.
187
191
.
21.
Yasrebi
,
M.
,
Ziomek-Moroz
,
M.
,
Kemp
,
W.
, and
Sturgis
,
D. H.
, 1996, “
Role of Particle Dissolution in the Stability of Binary Yttria-Silica Colloidal Suspensions
,”
J. Am. Ceram. Soc.
0002-7820,
79
(
5
), pp.
1223
1227
.
You do not currently have access to this content.