Planar SOFC stack technology based on a unique concept (SOFConnex™) uses structured gas distribution layers between unprofiled metal sheet interconnects and thin Ni-YSZ anode supported electrolyte cells. The layers are flexible both in material and design and allow to implement new configurations relatively simply; manifolding can be internal, external, or combined. Together with thin stack components, independent of the supplier, the SOFConnex™ stacking approach allows compact planar assembly with low cost potential and adequate power density. Different cell and flow designs have been realized. With a basic flow configuration, short stacks (50cm2 cell active area) were assembled and tested, power density at 800°C reaching 0.5Wcm2 at 0.7V average cell voltage (1.5kWeL, 0.36Ωcm2 area specific resistance), for 65% fuel utilization and 35% lower heating value electrical efficiency. Short stacks were thermally cycled and operated with both hydrogen and syngas. Degradation was essentially Ohmic (confirmed from impedance spectroscopy on stacks) and at first mainly due to the cathode-electrolyte interfacial reaction, performance loss was subsequently strongly reduced after cathode replacement. Using multiple voltage probes with additional interconnects allowed to separately monitor current collection losses during polarization. With an improved design in terms of sealing, postcombustion control and flow field, stacks up to 1kWe have been operated.

1.
Williams
,
M. C.
, and
Strakey
,
J. P.
, 2003, “
US-DOE Office of Fossil Energy’s SOFC Programs
,”
Proceedings of the Eighth International Symposium on Solid Oxide Fuel Cells
,
S. C.
Singhal
and
M.
Dokiya
, eds.,
The Electrochemical Society Inc.
,
Pennington, NJ
, Vol.
2003-07
, pp.
3
8
.
2.
Molinelli
,
M.
,
Larrain
,
D.
,
Ihringer
,
R.
,
Constantin
,
L.
,
Autissier
,
N.
,
Bucheli
,
O.
,
Favrat
,
D.
, and
Van herle
,
J.
, 2003, “
Current Collection and Stacking of Anode-Support Cells With Metal Interconnects to Compact Repeating Units
,”
Proceedings of the Eighth International Symposium on Solid Oxide Fuel Cells
,
S.
Singhal
and
M.
Dokiya
, eds.,
The Electrochemical Society Inc.
,
Pennington, NJ
, Vol.
2003-07
, pp.
905
913
.
3.
Molinelli
,
M.
,
Larrain
,
D.
,
Autissier
,
N.
,
Ihringer
,
R.
,
Sfeir
,
J.
,
Badel
,
N.
,
Bucheli
,
O.
, and
Van herle
,
J.
, 2004, “
Compact 100W Stacks Using Thin Components of Anode-Supported Cells and Metal Interconnects
,”
Proceedings of the Sixth European Solid Oxide Fuel Cells Forum
,
M.
Mogensen
, ed.,
European Fuel Cell Forum
,
Oberrohrdorf
, Vol.
1
, pp.
135
144
.
4.
Van herle
,
J.
,
Ihringer
,
R.
,
Vasquez
,
R.
,
Constantin
,
L.
, and
Bucheli
,
O.
, 2001, “
Anode Supported SOFC With Screen-Printed Cathodes
,”
J. Eur. Ceram. Soc.
0955-2219,
21
, pp.
1855
1859
.
5.
Autissier
,
N.
,
Larrain
,
D.
,
Van herle
,
J.
, and
Favrat
,
D.
, 2004, “
CFD Simulation Tool for SOFC
,”
J. Power Sources
0378-7753,
131
, pp.
313
319
.
6.
Larrain
,
D.
,
Van herle
,
J.
,
Maréchal
,
F.
, and
Favrat
,
D.
, 2004, “
Generalized Model of SOFC Planar Repeat Element for Design Optimisation
,”
J. Power Sources
0378-7753,
131
, pp.
304
312
.
7.
Van herle
,
J.
,
Larrain
,
D.
,
Autissier
,
N.
,
Wuillemin
,
Z.
,
Molinelli
,
M.
, and
Favrat
,
D.
, 2005, “
Modeling and Experimental Validation of SOFC Materials and Stacks
,”
J. Eur. Ceram. Soc.
0955-2219,
25
, pp.
2627
2632
.
8.
Luong
,
M.-T.
, 2005, “
Résolution Spatiale des Réactifs gazeux dans une pile à combustible de type SOFC
,” Masters thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
9.
Ravussin
,
F.
, 2004, “
Caractérisations Locales dans une Pile à Combustible SOFC
,” Masters thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
10.
Wuillemin
,
Z.
,
Autissier
,
N.
,
Luong
,
M.-T.
,
Van herle
,
J.
, and
Favrat
,
D.
, 2008, “
Modeling and Study of the Influence of Sealing on a Solid Oxide Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
5
, pp.
011016
.
11.
Simner
,
S.
,
Bonnett
,
J.
,
Canfield
,
N. L.
,
Meinhardt
,
K. D.
,
Shelton
,
J. P.
,
Sprenkle
,
V. L.
, and
Stevenson
,
J. W.
, 2003, “
Development of Lanthanum Ferrite SOFC Cathodes
,”
J. Power Sources
0378-7753,
113
, pp.
1
10
.
12.
Baumann
,
F. S.
,
Fleig
,
J.
,
Konuma
,
M.
,
Starke
,
U.
,
Habermeier
,
H.-U.
, and
Maier
,
J.
, 2005, “
Strong Performance Improvement of La0.6Sr0.4Co0.8Fe0.2O3‐δ SOFC Cathodes by Electrochemical Activation
,”
J. Electrochem. Soc.
0013-4651,
152
(
10
), pp.
A2074
A2079
.
13.
Bessler
,
W. G.
, 2006, “
Gas Concentration Impedance of Solid Oxide Fuel Cell Anodes
,”
J. Electrochem. Soc.
0013-4651,
153
(
8
), pp.
A1492
A1504
.
14.
Bucheli
,
O.
,
Molinelli
,
M.
,
Zähringer
,
T.
,
Thorn
,
E.
,
Diethelm
,
S.
,
Wuillemin
,
Z.
,
Nakajo
,
A.
,
Autissier
,
N.
, and
Van herle
,
J.
, “
Design of 500W-class SOFC Stack With Homogeneous Cell Performance
,”
Proceedings of the Tenth International Symposium on Solid Oxide Fuel Cells
,
S.
Singhal
and
H.
Yokokawa
, eds.,
Electrochem. Soc. Inc.
,
Pennington, NJ
, Proceedings Volume 200-7, pp.
123
133
.
You do not currently have access to this content.