Molten carbonate fuel cells are well suited for stationary power production and heat supply. In order to enhance service lifetime, hot spots, respectively, high temperature gradients inside the fuel cell have to be avoided. In conflict with that, there is the desire to achieve faster load changes while temperature gradients stay small. For the first time, optimal fast load changes have been computed numerically, including a parametric sensitivity analysis, based on a mathematical model of Heidebrecht. The mathematical model allows for the calculation of the dynamical behavior of molar fractions, molar flow densities, temperatures in gas phases, temperature in solid phase, cell voltage, and current density distribution. The dimensionless model is based on the description of physical phenomena. The numerical procedure is based on a method of line approach via spatial discretization and the solution of the resulting very large scale optimal control problem by a nonlinear programming approach.

1.
Heidebrecht
,
P.
, 2005, “
Modelling, Analysis and Optimisation of a Molten Carbonate Fuel Cell With Direct Internal Reforming (DIR-MCFC)
,” VDI Fortschritt Berichte, Reihe, 3, No. 826, VDI Verlag, Düsseldorf, Germany.
2.
Heidebrecht
,
P.
, and
Sundmacher
,
K.
, 2005, “
Dynamic Model of a Cross-Flow Molten Carbonate Fuel Cell With Direct Internal Reforming
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
A2217
A2228
.
3.
Sternberg
,
K.
, 2007, “
Simulation, Optimale Steuerung und Sensitivitätsanalyse einer Schmelzkarbonat-Brennstoffzelle mithilfe eines partiellen differential-algebraischen dynamischen Gleichungssystems
,” Dissertation, Universität Bayreuth, Bayreuth, Germany.
4.
Pesch
,
H. J.
,
Sternberg
,
K.
, and
Chudej
,
K.
, 2006, “
Towards the Numerical Solution of a Large Scale PDAE Constrained Optimization Problem Arising in Molten Carbonate Fuel Cell Modeling
,”
Large Scale Nonlinear Optimization
,
G.
Di Pillo
and
M.
Roma
, eds.,
Springer
,
New York
, pp.
243
253
.
5.
Bischoff
,
M.
, and
Huppmann
,
G.
, 2002, “
Operating Experience With a 250kWel Molten Carbonate Fuel Cell (MCFC) Power Plant
,”
J. Power Sources
0378-7753,
105
(
2
), pp.
216
221
.
6.
Gundermann
,
M.
,
Heidebrecht
,
P.
, and
Sundmacher
,
K.
, 2006, “
Validation of a Mathematical Model Using an Industrial MCFC Plant
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
303
307
.
7.
Molten Carbonate Fuel Cells, Modeling, Analysis, Simulation, and Control
, 2007,
K.
Sundmacher
,
A.
Kienle
,
H. J.
Pesch
,
J. F.
Berndt
, and
G.
Huppmann
, eds.,
Wiley-VCH
,
Weinheim
.
8.
Büskens
,
C.
, and
Maurer
,
H.
, 2001, “
Sensitivity Analysis and Real-Time Control of Parametric Optimal Control Problems Using Nonlinear Programming Methods
,”
Online Optimization of Large Scale Systems
,
M.
Grötschel
,
S. O.
Krumke
, and
J.
Rambo
, eds.,
Springer
,
Berlin
, pp.
57
68
.
9.
Büskens
,
C.
, 1998, “
Optimierungsmethoden und Sensitivitätsanalyse für Optimale Steuerprozesse mit Steuer- und Zustands-Beschränkungen
,” Dissertation, Universität Münster, Münster, Germany.
10.
Büskens
,
C.
, and
Maurer
,
H.
, 2001, “
Sensitivity Analysis and Real-Time Control of NLP Problems
,”
Online Optimization of Large Scale Systems
,
M.
Grötschel
et al.
, eds.,
Springer
,
Berlin
, pp.
3
16
.
You do not currently have access to this content.