A major issue of polymer-electrolyte-membrane (PEM) fuel cell operation is the water management of the cells. This article tries to contribute to an improved understanding of flooding/drying out effects by performing a analysis for a rigorous two-phase PEM fuel cell model. The model is examined by means of a bifurcation analysis. This investigation is performed numerically with parameter continuation methods. The nonlinear behavior is qualified and possible instabilities are detected. A steady state multiplicity is found. The multiplicity is physically explained and the influence of selected fuel cell parameters is investigated. The multiplicity is finally verified in a dynamic simulation. The future work aims at a model reduction of the analyzed fuel cell model to gain a low order model suitable for model-based control strategies.

1.
Eckl
,
R.
,
Zehtner
,
W.
,
Leu
,
C.
, and
Wagner
,
U.
, 2004, “
Experimental Analysis of Water Management in a Self-Humidifying Polymer Electrolyte Fuel Cell Stack
,”
J. Power Sources
0378-7753,
138
(
1–2
), pp.
137
144
.
2.
Knights
,
S. D.
,
Colbow
,
K. M.
,
St-Pierre
,
J.
, and
Wilkinson
,
D. P.
, 2004, “
Aging Mechanisms and Lifetime of PEFC and DMFC
,”
J. Power Sources
0378-7753,
127
(
1–2
), pp.
127
134
.
3.
Benziger
,
J.
,
Chia
,
E.
,
Moxley
,
J.
, and
Kevrekidis
,
I.
, 2005, “
The Dynamic Response of PEM Fuel Cells to Changes in Load
,”
Chem. Eng. Sci.
0009-2509,
60
(
6
), pp.
1743
1759
.
4.
Katsaounis
,
A.
,
Balomenou
,
S.
,
Tsiplakides
,
D.
,
Brosda
,
S.
,
Neophytides
,
S.
, and
Vayenas
,
C.
, 2005, “
Proton Tunneling-Induced Bistability, Oscillations and Enhanced Performance of PEM Fuel Cells
,”
Appl. Catal., B
0926-3373,
56
(
3
), pp.
251
258
.
5.
Kulikovsky
,
A. A.
,
Scharmann
,
H.
, and
Wippermann
,
K.
, 2004, “
On the Origin of Voltage Oscillations of a Polymer Electrolyte Fuel Cell in Galvanostatic Regime
,”
Electrochem. Commun.
1388-2481,
6
(
7
), pp.
729
736
.
6.
Zhang
,
J.
,
Fehribach
,
J. D.
, and
Datta
,
R.
, 2004, “
Mechanistic and Bifurcation Analysis of Anode Potential Oscillations in PEMFCs with CO in Anode Feed
,”
J. Electrochem. Soc.
0013-4651,
151
(
5
), pp.
A689
A697
.
7.
Ziegler
,
C.
,
Yu
,
H. M.
, and
Schumacher
,
J. O.
, 2005, “
Two-Phase Dynamic Modeling of the PEMFC and Simulation of Cyclo-Voltammograms
,”
J. Electrochem. Soc.
0013-4651,
152
(
8
), pp.
A1555
A1567
.
8.
Weber
,
A. Z.
, and
Newman
,
J.
, 2003, “
Transport in Polymer-Electrolyte Membranes, I. Physical Model
,”
J. Electrochem. Soc.
0013-4651,
150
(
7
), pp.
A1008
A1015
.
9.
Weber
,
A. Z.
, and
Newman
,
J.
, 2004, “
Transport in Polymer-Electrolyte Membranes, II. Mathematical Model
,”
J. Electrochem. Soc.
0013-4651,
151
(
2
), pp.
A311
A325
.
10.
Weber
,
A. Z.
, and
Newman
,
J.
, 2004, “
Transport in Polymer-Electrolyte Membranes, III. Model Validation in a Simple Fuel-Cell Model
,”
J. Electrochem. Soc.
0013-4651,
151
(
2
), pp.
A326
A339
.
11.
Weber
,
A. Z.
,
Darling
,
R. M.
, and
Newman
,
J.
, 2004, “
Modeling Two-Phase Behavior in PEFCs
,”
J. Electrochem. Soc.
0013-4651,
151
(
10
), pp.
A1715
A1727
.
12.
Bear
,
J.
, 1972,
Dynamics of Fluid in Porous Media
,
Elsevier
,
New York
.
13.
Mangold
,
M.
,
Motz
,
S.
, and
Gilles
,
E. D.
, 2002, “
A Network Theory for the Structured Modelling of Chemical Processes
,”
Chem. Eng. Sci.
0009-2509,
57
(
19
), pp.
4099
4116
.
14.
Tränkle
,
F.
,
Zeitz
,
M.
,
Ginkel
,
M.
, and
Gilles
,
E.
, 2000, “
PROMOT: A Modeling Tool for Chemical Processes
,”
Math. Comput. Model. Dyn. Syst.
1387-3954,
6
(
3
), pp.
283
307
.
15.
Mangold
,
M.
,
Kienle
,
A.
,
Gilles
,
E. D.
, and
Mohl
,
K. D.
, 2000, “
Nonlinear Computation in DIVA—Methods and Applications
,”
Chem. Eng. Sci.
0009-2509,
55
(
2
), pp.
441
454
.
16.
Kuznetsov
,
Y. A.
, 2004,
Elements of Applied Bifurcation Theory
,
3rd ed.
,
Springer
,
New York
.
17.
Seydel
,
R.
, 1994,
Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos
,
2nd ed.
,
Springer
,
New York
.
You do not currently have access to this content.