Fabrication procedures for a micromethanol reformer including catalyst preparation, coating, and patterning on a wafer are described. Cu-based catalyst was prepared by coprecipitation method. The effects of precipitation conditions on the catalytic activity and adhesion of coated catalyst on the substrate were tested to find the optimum precipitation condition. For coating purposes, the prepared catalyst was ground into powder and mixed with binder in the solvent. Simultaneous precipitation of catalyst and binder on the wafer produced catalyst layer that is uniform and rigidly found to the wafer surface. The amount of coated catalyst on the wafer was 58mgcm2 with a thickness of 30μm. By repetition of coating procedure, catalyst mass up to 15mgcm2 was obtained with increased reactivity. Patterned catalyst layer was obtained by novel lift-off process of polyvinyl alcohol sacrificial layer. A micromethanol reformer was fabricated using a typical lithography procedure including catalyst coating and patterning process. Typical methanol conversion was higher than the conventional packed bed reactor.

1.
Holladay
,
J. D.
,
Wainright
,
J. S.
,
Jones
,
E. O.
, and
Gano
,
S. R.
, 2004, “
Power Generation Using a Mesoscale Fuel Cell Integrated With a Microscale Fuel Processor
,”
J. Power Sources
0378-7753,
130
, pp.
111
118
.
2.
Meyers
,
J. P.
, and
Maynard
,
H. L.
, 2002, “
Design Considerations for Miniaturized PEM Fuel Cells
,”
J. Power Sources
0378-7753,
109
, pp.
76
88
.
3.
Shah
,
K.
,
Shin
,
W. C.
, and
Besser
,
R. S.
, 2004, “
A PDMS Micro Proton Exchange Membrane Fuel Cell by Conventional and Non-Conventional Microfabrication Techniques
,”
Sens. Actuators B
0925-4005,
97
, pp.
157
167
.
4.
Jamie
,
D. R.
, and
Holladay
,
J. D.
, 2002, “
Development of a Soldier-Portable Fuel Cell Power System Part 1: A Bread-Board Methanol Fuel Processor
,”
J. Power Sources
0378-7753,
108
, pp.
28
34
.
5.
Holladay
,
J. D.
, and
Jones
,
E. O.
, 2002, “
Microfuel Processor for Use in a Miniature Power Supply
,”
J. Power Sources
0378-7753,
108
, pp.
21
27
.
6.
Morse
,
J. D.
,
Jankowski
,
A. F.
,
Graff
,
R. T.
, and
Hayes
,
J. P.
, 2000, “
Novel Proton Exchange Membrane Thin-Film Fuel Cell for Micro-Scale Energy Conversion
,”
J. Vac. Sci. Technol. A
0734-2101,
18
(
4
), pp.
2003
2005
.
7.
Min
,
K.-B.
,
Tanaka
,
S.
, and
Esashi
,
M.
, 2002, “
MEMS-Based Polymer Electrolyte Fuel Cell
,”
Electrochemistry (Tokyo, Jpn.)
1344-3542,
70
(
12
), pp.
924
927
.
8.
Min
,
K.-B.
,
Tanaka
,
S.
, and
Esashi
,
M.
, 2003, “
Silicon-Based Micro-Polymer Electrolyte Fuel Cells
,”
Proceedings of the IEEE 16th Annual International Conference on Microelectro Mechanical Systems
,
Kyoto
,
Japan
, pp.
379
382
.
9.
Tanaka
,
S.
,
Changa
,
K.-S.
,
Mina
,
K.-B.
,
Satoh
,
D.
,
Yoshida
,
K.
, and
Esashi
,
M.
, 2004, “
MEMS-Based Components of a Miniature Fuel Cell∕Fuel Reformer System
,”
Chem. Eng. J.
0300-9467,
101
, pp.
143
149
.
10.
Sim
,
Y.
,
Kim
,
G. Y.
, and
Yang
,
S. S.
, 2001, “
Fabrication of Micro Power Source Using a Micro Direct Methanol Fuel Cell for the Medical Applications
,”
Proceedings of the IEEE International Conference on Micro ElectroMechanical Systems (MEMS)
, pp.
341
344
.
11.
Mench
,
M.
,
Wang
,
Z. H.
,
Bhatia
,
K.
, and
Wang
,
C. Y.
, 2001, “
Design of a Micro Direct Methanol Fuel Cell
,”
Proceedings of the International Mechanical Engineering Congress and Exposition (IMECE)
,
New York
.
12.
Gogel
,
V.
,
Frey
,
T.
,
Yongsheng
,
Z.
,
Friedrich
,
K. A.
,
Jörissen
,
L.
, and
Garche
,
J.
, 2004, “
Performance and Methanol Permeation of Direct Methanol Fuel Cells: Dependence on Operating Conditions and on Electrode Structure
,”
J. Power Sources
0378-7753,
127
, pp.
172
180
.
13.
Hohlein
,
B.
,
Bee
,
M.
,
Bogild-Hansen
,
J.
,
Brockerhoff
,
P.
,
Colsman
,
G.
,
Emonts
,
B.
,
Menzer
,
R.
, and
Riedel
,
E.
, 1996, “
Hydrogen From Methanol for Fuel Cells in Mobile Systems: Development of a Compact Reformer
,”
J. Power Sources
0378-7753,
61
, pp.
143
147
.
14.
Qi
,
Z.
,
He
,
C.
, and
Kaufman
,
A.
, 2002, “
Effect of CO in the Anode Fuel on the Performance of PEM Fuel Cell Cathode
,”
J. Power Sources
0378-7753,
111
, pp.
239
247
.
15.
Peppley
,
B. A.
,
Amphett
,
J. C.
,
Kearns
,
L. M.
, and
Mann
,
R. F.
, 1999, “
Methanol Steam Reforming on Cu∕ZnO∕Al2O3 Catalysts Part 2. a Comprehensive Kinetic Model
,”
Appl. Catal., A
0926-860X,
179
, pp.
31
50
.
16.
Bravo
,
J.
,
Karim
,
A.
,
Conant
,
T.
, and
Lopez
,
G. P.
, 2004, “
Wall Coating of a CuO∕ZnO∕Al2O3 Methanol Steam Reforming Catalyst for Micro-Channel Reformers
,”
Chem. Eng. J.
0300-9467,
101
, pp.
113
121
.
17.
Agrell
,
J.
,
Boutonnet
,
M.
,
Melian-Cabrera
,
I.
, and
Fierro
,
J. L. G.
, 1998, “
Production of Hydrogen From Methanol Over Binary Cu∕ZnO Catalysts Part 1. Catalyst Preparation and Characterization
,”
Appl. Catal., A
0926-860X,
253
, pp.
201
211
.
18.
Park
,
G. G.
,
Seo
,
D. J.
,
Park
,
S. H.
,
Yoon
,
Y. G.
,
Kim
,
C. S.
, and
Yoon
,
W. L.
, 2004, “
Development of Microchannel Methanol Steam Reformer
,”
Chem. Eng. J.
0300-9467,
101
, pp.
87
92
.
19.
Larminie
,
J.
, and
Dicks
,
A.
, 1999,
Fuel Cell Systems Explained
,
Wiley
,
New York
, pp.
297
300
.
20.
Lee
,
D. H.
, 2003, “
Measurement and Analysis of Thermal Process for Micro Power Generation
,” Ph.D. thesis, KAIST, Daejeon.
21.
Dietrich
,
T. R.
,
Ehrfeld
,
W.
,
Lacher
,
M.
,
Kramer
,
M.
, and
Speit
,
B.
, 1996, “
Fabrication Technologies for Microsystems Utilizing Photoetchable Glass
,”
Microelectron. Eng.
0167-9317,
30
, pp.
497
504
.
22.
Lee
,
D. H.
,
Park
,
D. E.
,
Yoon
,
J. B.
,
Kwon
,
S.
, and
Yoon
,
E.
, 2002, “
Fabrication and Test of a MEMS Combustor and Reciprocating Device
,”
J. Micromech. Microeng.
0960-1317,
12
(
1
), pp.
26
34
.
You do not currently have access to this content.