A dynamic two-phase flow model for proton exchange membrane fuel cells is presented. The two-dimensional model includes the two-phase flow of water (gaseous and liquid) in the gas diffusion layers (GDLs) and in the catalyst layers (CLs), as well as the transport of the species in the gas phase. The membrane model describes water transport in a perfluorinated-sulfonic-acid-ionomer-based membrane. Two transport modes of water in the membrane are considered, and appropriate coupling conditions to the porous CLs are formulated. Water transport through the membrane in the vapor equilibrated transport mode is described by a Grotthus mechanism, which is included as a macroscopic diffusion process. The driving force for water transport in the liquid equilibrated mode is due to a gradient in the hydraulic water pressure. Moreover, electro-osmotic drag of water is accounted for. The discretization of the resulting flow equations is done by a mixed finite element approach. Based on this method, the transport equations for the species in each phase are discretized by a finite volume scheme. The coupled mixed finite element/finite volume approach gives the spatially resolved water and gas saturation and the species concentrations. In order to describe the charge transport in the fuel cell, the Poisson equations for the electrons and protons are solved by using Galerkin finite element schemes. The electrochemical reactions in the catalyst layer are modeled with a simple Tafel approach via source/sink terms in the Poisson equations and in the mass balance equations. Heat transport is modeled in the GDLs, the CLs, and the membrane. Heat transport through the solid, liquid, and gas phases is included in the GDLs and the CLs. Heat transport in the membrane is described in the solid and liquid phases. Both heat conduction and heat convection are included in the model.

1.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2342
.
2.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Modeling Water Content Effects in Polymer Electrolyte Fuel Cells
,”
Modelling of Batteries and Fuel Cells
,
The Electrochemical Society Softbound Proceedings Series
,
R. E.
White
,
M. W.
Verbrugge
, and
J. F.
Stockel
, eds.,
The Electrochemical Society
,
Pennington, NJ
, Vol.
91–10
, pp.
209
223
.
3.
Springer
,
T. E.
, and
Gottesfeld
,
S.
, 1991, “
Pseudohomogeneous Catalyst Layer Model for Polymer Electrolyte Fuel Cell
,”
Proceedings of the Symposium on Modeling of Batteries and Fuel Cells
,
The Electrochemical Society
, Vol.
91–10
, pp.
197
208
.
4.
Nguyen
,
T. V.
, and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
8
), pp.
2178
2186
.
5.
Gurav
,
V.
,
Liu
,
H.
, and
Kakac
,
S.
, 1998, “
Two-Dimensional Model for Proton Exchange Membrane Fuel Cells
,”
AIChE J.
0001-1541,
44
(
11
), pp.
2410
2422
.
6.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1999, “
Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
146
(
1
), pp.
38
45
.
7.
Nam
,
J. H.
, and
Kaviany
,
M.
, 2003, “
Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4595
4611
.
8.
Berning
,
T.
, and
Djilali
,
N.
, 2003, “
A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
150
(
12
), pp.
A1589
A1598
.
9.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2004, “
Two-Phase Transport and the Role of Micro-Porous Layer in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
49
, pp.
4359
4369
.
10.
Siegel
,
N. P.
,
Ellis
,
M. W.
,
Nelson
,
D. J.
, and
Spakovsky
,
M. R.
, 2004, “
A Two-Dimensional Computational Model of a PEMFC With Liquid Water Transport
,”
J. Power Sources
0378-7753,
128
, pp.
173
184
.
11.
Chen
,
K. S.
,
Hickner
,
M. A.
, and
Noble
,
D. R.
, 2005, “
Simplified Models for Predicting the Onset of Liquid Water Droplet Instability at the Gas Diffusion Layer/Gas Flow Channel Interface
,”
Int. J. Heat Mass Transfer
0017-9310,
29
, pp.
1113
1132
.
12.
Shah
,
A.
,
Kim
,
G.-S.
,
Gervais
,
W.
,
Young
,
A.
,
Promislow
,
K.
,
Li
,
J.
, and
Ye
,
S.
, 2006, “
The Effects of Water and Microstructure on the Performance of Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
160
(
2
), pp.
1251
1268
.
13.
Helmig
,
R.
, 1997,
Multiphase Flow and Transport in the Subsurface
,
Springer-Verlag
,
Berlin
.
14.
Hornung
,
U.
, 1997,
Homogenization and Porous Media
,
Interdisciplinary Applied Mathematics
Vol.
6
,
Springer
,
New York
.
15.
Brooks
,
R. J.
, and
Corey
,
A. T.
, 1964, “
Hydraulic Properties of Porous Media
,” Hydrology Paper 3, Colorado State University, Fort Collins.
16.
Schulz
,
V.
,
Mukherjee
,
P.
,
Becker
,
J.
,
Wiegmann
,
A.
, and
Wang
,
C.-Y.
, 2007, “
Modelling of Two-Phase Behaviour in the Gas Diffusion Medium of Polymer Electrolyte Fuel Cells Via Full Morphology Approach
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
419
426
.
17.
Ewing
,
R.
, 1995, “
Multiphase Flows in Porous Media
,”
Advanced Mathematics: Computations and Applications
, pp.
49
63
.
18.
van Genuchten
,
M. T.
, 1980, “
A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils
,”
Soil Sci. Soc. Am. J.
0361-5995,
44
, pp.
892
898
.
19.
Nguyen
,
T.
, 1999, “
Modeling of Two-Phase Flow in the Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Flow Fields
,”
Tutorials in Electrochemical Engineering Mathematical Modeling
,
The Electrochemical Society Proceedings
, Vol.
99–14
, pp.
222
241
.
20.
Sonntag
,
D.
, 1994, “
Advancements in the Field of Hygrometry
,”
Meteorol. Zelischrift
,
3
, pp.
51
66
.
21.
Atkins
,
P. W.
, 2001,
Physikalische Chemie
,
3rd ed.
,
Wiley-VCH
,
Weinheim
.
22.
Hamann
,
C. H.
, and
Vielstich
,
W.
, 1998,
Elektrochemie
,
3rd ed.
,
Wiley-VCH
,
Weinheim
.
23.
Larminie
,
J.
, and
Dicks
,
A.
, 2000,
Fuel Cell Systems Explained
,
Wiley
,
Baffins Lane, Chichester
.
24.
Woodside
,
W.
, and
Messmer
,
J.
, 1961, “
Thermal Conductivity of Porous Media. I. Unconsolidated Sands
,”
J. Appl. Phys.
0021-8979,
32
, pp.
1688
1706
.
25.
Weber
,
A. Z.
, and
Newman
,
J.
, 2003, “
Transport in Polymer-Electrolyte Membranes. I. Physical Model
,”
J. Electrochem. Soc.
0013-4651,
150
(
7
), pp.
A1008
A1015
.
26.
Weber
,
A. Z.
, and
Newman
,
J.
, 2004, “
Transport in Polymer-Electrolyte Membranes. II. Mathematical Model
,”
J. Electrochem. Soc.
0013-4651,
151
(
2
), pp.
A311
A325
.
27.
Thampan
,
T.
,
Malhotra
,
S.
,
Tang
,
H.
, and
Datta
,
R.
, 2000, “
Modeling of Conductive Transport in Proton-Exchange Membranes for Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
(
9
), pp.
3242
3250
.
28.
Jaeger
,
W.
, and
Mikelic
,
A.
, 2000, “
On the Boundary Conditions at the Contact Interface Between Two Porous Media
,”
Partial Differential Equations: Theory and Numerical Solution
, Vol.
406
, pp.
175
186
.
29.
Damjanovic
,
A.
, and
Brusic
,
V.
, 1967, “
Electrode Kinetics of Oxygen Reduction on Oxide-Free Platinum Electrodes
,”
Electrochim. Acta
0013-4686,
12
, pp.
615
628
.
30.
Chen
,
Z.
,
Ewing
,
R.
, and
M. S.
,
E.
, 1994, “
Multiphase Flow Simulation With Various Boundary Conditions
,”
Computational Methods in Water Resources
,
Kluwer Academic
,
Netherlands
, pp.
925
932
.
31.
Ohlberger
,
M.
, 1997, “
Convergence of a Mixed Finite Element—Finite Volume Method for the Two Phase Flow in Porous Media
,”
East-West J. Numer. Math.
,
5
, pp.
183
210
.
32.
Ohlberger
,
M.
, 1999, “
Adaptive Mesh Refinement for Single and Two Phase Flow Problems in Porous Media
,”
Proceedings of the Second International Symposium on Finite Volumes for Complex Applications: Problems and Perspectives
,
Duisburg
,
Hermes Science
,
Paris
, pp.
761
768
.
33.
Bürkle
,
D.
, and
Ohlberger
,
M.
, 2002, “
Adaptive Finite Volume Methods for Displacement Problems in Porous Media
,”
Comput. Visualization Sci.
1432-9360,
5
(
2
), pp.
95
106
.
34.
Herbin
,
R.
, and
Ohlberger
,
M.
, 2002, “
A Posteriori Error Estimate for Finite Volume Approximations of Convection Diffusion Problems
,”
Proceedings of the Third International Symposium on Finite Volumes for Complex Applications: Problems and Perspectives
,
Porquerolles
,
Hermes Science
,
Paris
, pp.
753
760
.
35.
Ohlberger
,
M.
, and
Rohde
,
C.
, 2002, “
Adaptive Finite Volume Approximations for Weakly Coupled Convection Dominated Parabolic Systems
,”
IMA J. Numer. Anal.
0272-4979,
22
(
2
), pp.
253
280
.
36.
Klöfkorn
,
R.
,
Kröner
,
D.
, and
Ohlberger
,
M.
, 2002, “
Local Adaptive Methods for Convection Dominated Problems
,”
Int. J. Numer. Methods Fluids
0271-2091,
40
(
1-2
), pp.
79
91
.
37.
Ohlberger
,
M.
, 2004, “
Higher Order Finite Volume Methods on Self-Adaptive Grids for Convection Dominated Reactive Transport Problems in Porous Media
,”
Comput. Visualization Sci.
1432-9360,
7
(
1
), pp.
41
51
.
38.
Gerthsen
,
C.
, and
Vogel
,
H.
, 1999,
Gerthsen Physik
,
Springer
,
Berlin
.
39.
Parthasarathy
,
A.
, and
Martin
,
C. R.
, 1991, “
Investigation of the O2 Reduction Reaction at the Platinum/Nafion Interface Using a Solid-State Electrochemical Cell
,”
J. Electrochem. Soc.
0013-4651,
138
(
4
), pp.
916
921
.
40.
Wöhr
,
M.
,
Bolwin
,
K.
,
Schnurnberger
,
W.
,
Fischer
,
M.
,
Neubrand
,
W.
, and
Eigenberger
,
G.
, 1998, “
Dynamic Modelling and Simulation of a Polymer Membrane Fuel Cell Including Mass Transport Limitation
,”
Int. J. Hydrogen Energy
0360-3199,
23
(
3
), pp.
213
218
.
You do not currently have access to this content.