A typical integrated-planar solid oxide fuel cell (IP-SOFC) consists of modules with series connected electrochemical cells printed on their outer surfaces. Oxygen is supplied to the cathodes from air flowing over the outside of the module and hydrogen diffuses from the internal fuel channels to the anodes through the porous module support structure. The IP-SOFC is intended for use in medium scale stationary power applications, and such a system will use a fuel cell stack containing many thousands of modules housed inside a pressure vessel. For certain purposes, the geometry of this stack can be adequately described using a computational domain that considers just two modules. A computer code has been developed to simulate the many physical and chemical processes occurring within the stack, including fluid flow, heat transfer, water gas shift, and electrochemical reactions. The simulation results show how the performance of the IP-SOFC stack is strongly affected by these physical processes, the geometry of the stack, and the operating conditions. The temperature distribution, which is difficult to predict using a less realistic geometric model, is almost uniform within each fuel channel and rises steadily in the air flow direction. The shift reaction, which is catalyzed by the anodes, is of great importance, and as the fuel flow becomes depleted of hydrogen it enables the electrochemical cells to make increasing use of carbon monoxide. Overall it was found that the operating voltage produced by the fuel cells is typically 0.74V and the component efficiency, the ratio of the actual power output to the maximum available from the fuels consumed, is around 59%.

1.
Matsuzaki
,
Y.
, and
Yasuda
,
I.
, 2000, “
Electrochemical Oxidation of H2 and CO in a H2-H2O-CO-CO2 System at the Iinterface of a Ni-YSZ Cermet Electrode and YSZ Electrolyte
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
1630
1635
.
2.
2003,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
S. C.
Singhal
and
K.
Kendall
, eds.,
Elsevier
,
New York
.
3.
Gardner
,
F. J.
,
Day
,
M. J.
,
Brandon
,
N. P.
,
Pashley
,
M. N.
, and
Cassidy
,
M.
, 2000, “
SOFC Technology Development at Rolls-Royce
,”
J. Power Sources
0378-7753,
86
, pp.
122
129
.
4.
Campanari
,
S.
, and
Iora
,
P.
, 2004, “
Definition and Sensitivity of a Finite Volume SOFC Model for a Tubular Cell Geometry
,”
J. Power Sources
0378-7753,
132
, pp.
113
126
.
5.
Iwata
,
H.
,
Hikosaka
,
T.
,
Morita
,
M.
,
Iwanari
,
T.
,
Ito
,
K.
,
Onda
,
K.
,
Esaki
,
Y.
,
Sakaki
,
Y.
, and
Nagata
,
S.
, 2000, “
Performance Aanalysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions
,”
Solid State Ionics
0167-2738,
132
, pp.
297
308
.
6.
Nagata
,
S.
,
Momma
,
A.
,
Kato
,
T.
, and
Kasuga
,
Y.
, 2001, “
Numerical Analysis of Output Characteristics of Tubular SOFC With Internal Reformer
,”
J. Power Sources
0378-7753,
101
, pp.
60
71
.
7.
Li
,
P.-W.
, and
Chyu
,
M. K.
, 2003, “
Simulation of the Chemical/Electrochemical Reactions and Heat/Mass Transfer for a Tubular SOFC Stack
,”
J. Power Sources
0378-7753,
124
, pp.
487
498
.
8.
Roos
,
M.
,
Batawi
,
E.
,
Harnisch
,
U.
, and
Hocker
,
Th.
, 2003, “
Efficient Simulation of Fuel Cell Stacks With the Volume Averaging Method
,”
J. Power Sources
0378-7753,
118
, pp.
86
95
.
9.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
, 2004, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance
,”
J. Power Sources
0378-7753,
138
, pp.
120
136
.
10.
Costamagna
,
P.
,
Selimovic
,
A.
,
Del Borghi
,
M.
, and
Agnew
,
C.
, 2004, “
Electrochemical Model of the Integrated Planar Solid Oxide Fuel Cell (IP-SOFC)
,”
Chem. Eng. J.
0300-9467,
102
, pp.
61
69
.
11.
Chan
,
S. C.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
, 2001, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to Change of Cell Component Thickness
,”
J. Power Sources
0378-7753,
93
, pp.
130
140
.
12.
Young
,
J. B.
, and
Todd
,
B.
, 2005, “
Modelling of Multi-Component Gas Flows in Capillaries and Porous Solids
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5338
5353
.
13.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2006, “
Diffusion and Chemical Reaction in the Porous Structures of Solid Oxide Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
312
321
.
14.
Achenbach
,
E.
, 1994, “
Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack
,”
J. Power Sources
0378-7753,
49
, pp.
333
348
.
15.
Costamagna
,
P.
, and
Honegger
,
K.
, 1998, “
Modelling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilisation
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
3995
4007
.
16.
Petruzzi
,
L.
,
Cocchi
,
S.
, and
Fineschi
,
F.
, 2003, “
A Global Thermo-Electrochemical Model for SOFC Systems Design and Engineering
,”
J. Power Sources
0378-7753,
118
, pp.
96
107
.
17.
Heaton
,
H. S.
,
Reynolds
,
W. C.
, and
Kays
,
W. M.
, 1964, “
Heat Transfer in Annular Passages: Simultaneous Development of Velocity and Temperature Fields in Laminar Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
7
, pp.
763
781
.
18.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Acadamic
,
New York
.
19.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1987,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
20.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2005, “
Numerical Investigation of the Air Flow Through a Bundle of IP-SOFC Modules
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5475
5487
.
21.
Graven
,
W. M.
, and
Long
,
F. J.
, 1954, “
Kinetics and Mechanisms of the Two Opposing Reactions of the Equilibrium CO+H2O=CO2+H2
,”
J. Am. Chem. Soc.
0002-7863,
76
, pp.
2602
2607
.
22.
Bustamante
,
F.
,
Enick
,
R. M.
,
Rothenberger
,
K. S.
,
Howard
,
B. H.
,
Cugini
,
A. V.
,
Killmeyer
,
R. P.
,
Ciocco
,
M. V.
,
Morreale
,
B. D.
,
Chattopadhyay
,
S.
, and
Shi
,
S.
, 2004, “
High Temperature Kinetics of the Homogeneous Reverse Water-Gas Shift Reaction
,”
AIChE J.
0001-1541,
50
, pp.
1028
1041
.
23.
1989,
Catalyst Handbook
,
M. V.
Twigg
, ed.,
Wolfe
,
Frome
.
24.
Lehnert
,
W.
,
Meusinger
,
J.
, and
Thom
,
F.
, 2000, “
Modelling of Gas Transport Phenomena in SOFC Anodes
,”
J. Power Sources
0378-7753,
87
, pp.
57
63
.
25.
Minh
,
N. Q.
, 1995,
Science and Technology of Ceramic Fuel Cells
,
Elsevier
,
New York
.
26.
Bockris
,
M. O’M.
,
Reddy
,
A. K. N.
, and
Gamboa-Aldeco
,
M.
, 1998,
Modern Electrochemistry 2A
,
Kluwer
,
Dordrecht
, Chap. 7.
27.
Bossel
,
U. G.
, 1992, “
Facts and Figures, Final Report on SOFC Data
,” Swiss Federal Office of Energy, Technical Report.
28.
Modest
,
M. F.
, 1993,
Radiative Heat Transfer
,
McGraw-Hill
,
New York
.
29.
Murthy
,
S.
, and
Fedorov
,
A. G.
, 2003, “
Radiation Heat Transfer Analysis of the Monolith Type Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
124
, pp.
453
458
.
30.
Yakabe
,
H.
,
Ogiwara
,
T.
,
Hishinuma
,
M.
, and
Yasuda
,
I.
, 2001, “
3-D Model Calculation for Planar SOFC
,”
J. Power Sources
0378-7753,
102
, pp.
144
154
.
31.
Aguiar
,
P.
,
Chadwick
,
D.
, and
Kershenbaum
,
L.
, 2002, “
Modelling of an Indirect Internal Reforming Solid Oxide Fuel Cell
,”
Chem. Eng. Sci.
0009-2509,
57
, pp.
1665
1677
.
32.
Holman
,
J. P.
, 2002,
Heat Transfer
,
9th ed.
,
McGraw-Hill
,
New York
.
33.
Costamagna
,
P.
,
Cerutti
,
F.
,
Di Felice
,
R.
,
Collins
,
R.
,
Cunningham
,
R.
,
Bozzolo
,
M.
,
Tarnowski
,
O.
, and
Agnew
,
G.
, 2004, “
Integrated Planar Solid Oxide Fuel Cell (IP-SOFC) Coupled to a Reforming Reactor: Simulation Analysis
,”
Sixth European Solid Oxide Fuel Cell Forum
,
M.
Mogensen
, ed.,
European Fuel Cell Forum
,
Oberrohrdorf, Switzerland
, Vol.
2
, pp.
635
645
.
34.
Todd
,
B.
, and
Young
,
J. B.
, 2002, “
Thermodynamic and Transport Properties of Gases for Use in Solid Oxide Fuel Cell Modelling
,”
J. Power Sources
0378-7753,
110
, pp.
186
200
.
35.
Denton
,
J. D.
, 1992, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
18
26
.
36.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2004, “
Three-Dimensional Simulation of Chemically Reacting Gas Flows in the Porous Support Structure of an Integrated-Planar Solid Oxide Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3617
3629
.
37.
Haberman
,
B. A.
, 2005, “
Three-Dimensional Simulation of the Integrated-Planar Solid Oxide Fuel Cell
,” Ph.D. thesis, University of Cambridge, Cambridge, UK.
You do not currently have access to this content.