Natural gas appears to be a fuel of great interest for solid oxide fuel cell (SOFC) systems. It mainly consists of methane, which can be converted into hydrogen by direct internal reforming (DIR) within the SOFC anode. However, a major limitation to DIR is carbon formation within the ceramic layers at intermediate temperatures. This paper proposes a model solution using the CFD-ACE software package to simulate the behavior of a tubular SOFC. A detailed thermodynamic analysis is carried out to predict the boundary of carbon formation for SOFCs fueled by methane. Thermodynamic equilibrium calculations that take into account Boudouard and methane cracking reactions allow us to investigate the occurrence of carbon formation. This possibility is discussed from the values of driving forces for carbon deposition defined as and , from the equilibrium constants and of the Boudouard and cracking reactions, and from the partial pressure of species . Simulations allow the calculation of the distributions of partial pressures for all the gas species (, , CO, , and ), current densities, and potentials of both electronic and ionic phases within the anode part (i.e., gas channel and Cermet anode). Finally, a mapping of and values enables us to predict the predominant zones where carbon formation is favorable ( or ) or unfavorable ( or ) according to the calculation based on thermodynamic equilibrium. With regard to the values of these different coefficients, we can say that a carbon formation can be supposed for temperature less than and for ratios smaller than 1.
Skip Nav Destination
e-mail: jean-marie.klein@lepmi.inpg.fr
e-mail: yann.bultel@lepmi.inpg.fr
Article navigation
November 2007
This article was originally published in
Journal of Fuel Cell Science and Technology
Technical Papers
Modeling of a Solid Oxide Fuel Cell Fueled by Methane: Analysis of Carbon Deposition
J.-M. Klein,
e-mail: jean-marie.klein@lepmi.inpg.fr
J.-M. Klein
Laboratoire d’Electrochimie et de Physico-Chimie des Matériaux et des Interfaces (LEPMI)
, UMR 5631 CNRS-INPG-UJF, ENSEEG, BP 75, 38402 Saint Martin d’Hères, France
Search for other works by this author on:
Y. Bultel,
e-mail: yann.bultel@lepmi.inpg.fr
Y. Bultel
Laboratoire d’Electrochimie et de Physico-Chimie des Matériaux et des Interfaces (LEPMI)
, UMR 5631 CNRS-INPG-UJF, ENSEEG, BP 75, 38402 Saint Martin d’Hères, France
Search for other works by this author on:
M. Pons,
M. Pons
Laboratoire de Thermodynamique et de Physicochimie Métallurgique (LTPCM)
, UMR 5614 CNRS-INPG-UJF, ENSEEG, BP 75, 38402 Saint Martin d’Hères, France
Search for other works by this author on:
P. Ozil
P. Ozil
Laboratoire d’Electrochimie et de Physico-Chimie des Matériaux et des Interfaces (LEPMI)
, UMR 5631 CNRS-INPG-UJF, ENSEEG, BP 75, 38402 Saint Martin d’Hères, France
Search for other works by this author on:
J.-M. Klein
Laboratoire d’Electrochimie et de Physico-Chimie des Matériaux et des Interfaces (LEPMI)
, UMR 5631 CNRS-INPG-UJF, ENSEEG, BP 75, 38402 Saint Martin d’Hères, Francee-mail: jean-marie.klein@lepmi.inpg.fr
Y. Bultel
Laboratoire d’Electrochimie et de Physico-Chimie des Matériaux et des Interfaces (LEPMI)
, UMR 5631 CNRS-INPG-UJF, ENSEEG, BP 75, 38402 Saint Martin d’Hères, Francee-mail: yann.bultel@lepmi.inpg.fr
M. Pons
Laboratoire de Thermodynamique et de Physicochimie Métallurgique (LTPCM)
, UMR 5614 CNRS-INPG-UJF, ENSEEG, BP 75, 38402 Saint Martin d’Hères, France
P. Ozil
Laboratoire d’Electrochimie et de Physico-Chimie des Matériaux et des Interfaces (LEPMI)
, UMR 5631 CNRS-INPG-UJF, ENSEEG, BP 75, 38402 Saint Martin d’Hères, FranceJ. Fuel Cell Sci. Technol. Nov 2007, 4(4): 425-434 (10 pages)
Published Online: May 30, 2006
Article history
Received:
November 29, 2005
Revised:
May 30, 2006
Citation
Klein, J., Bultel, Y., Pons, M., and Ozil, P. (May 30, 2006). "Modeling of a Solid Oxide Fuel Cell Fueled by Methane: Analysis of Carbon Deposition." ASME. J. Fuel Cell Sci. Technol. November 2007; 4(4): 425–434. https://doi.org/10.1115/1.2759504
Download citation file:
Get Email Alerts
Cited By
Low Overpotential Electroreduction of CO2 on porous SnO2/ZnO Catalysts
J. Electrochem. En. Conv. Stor
Assessment of Newly-Designed Hybrid Nanofluid-Cooled Micro-Channeled Thermal Management System for Li-Ion Battery
J. Electrochem. En. Conv. Stor (February 2024)
High Performance Vanadium Redox Flow Battery Electrodes
J. Electrochem. En. Conv. Stor (February 2024)
State-of-Charge Estimation of Ultracapacitor Based on H Infinity Filter Considering Variable Temperature
J. Electrochem. En. Conv. Stor (February 2024)
Related Articles
Impact of the Temperature Profile on Thermal Stress in a Tubular Solid Oxide Fuel Cell
J. Fuel Cell Sci. Technol (February,2009)
CFD Modeling: Different Kinetic Approaches for Internal Reforming Reactions in an Anode-Supported SOFC
J. Fuel Cell Sci. Technol (June,2011)
Mixed-Fuels Fuel Cell Running on Methane-Air Mixture
J. Fuel Cell Sci. Technol (February,2006)
Numerical Investigation of a Delta High Power Density Cell and Comparison With a Flattened Tubular High Power Density Cell
J. Fuel Cell Sci. Technol (December,2010)
Related Proceedings Papers
Related Chapters
A High Temperature Tubular Solar Receiver for Production of Hydrogen and Carbon Nanoparticles from Methane Cracking
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Cubic Lattice Structured Multi Agent Based PSO Approach for Optimal Power Flows with Security Constraints
International Conference on Software Technology and Engineering, 3rd (ICSTE 2011)
Measurement and Modeling of Temperature Dependent Internal Hydrogen Assisted Cracking in Cr-Mo Steel
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions