Natural gas appears to be a fuel of great interest for solid oxide fuel cell (SOFC) systems. It mainly consists of methane, which can be converted into hydrogen by direct internal reforming (DIR) within the SOFC anode. However, a major limitation to DIR is carbon formation within the ceramic layers at intermediate temperatures. This paper proposes a model solution using the CFD-ACE software package to simulate the behavior of a tubular SOFC. A detailed thermodynamic analysis is carried out to predict the boundary of carbon formation for SOFCs fueled by methane. Thermodynamic equilibrium calculations that take into account Boudouard and methane cracking reactions allow us to investigate the occurrence of carbon formation. This possibility is discussed from the values of driving forces for carbon deposition defined as α=PCO2(KBPCO2) and β=PH22(KCPCH4), from the equilibrium constants KB and KC of the Boudouard and cracking reactions, and from the partial pressure Pi of species i. Simulations allow the calculation of the distributions of partial pressures for all the gas species (CH4, H2, CO, CO2, and H2O), current densities, and potentials of both electronic and ionic phases within the anode part (i.e., gas channel and Cermet anode). Finally, a mapping of α and β values enables us to predict the predominant zones where carbon formation is favorable (α or β<1) or unfavorable (α or β>1) according to the calculation based on thermodynamic equilibrium. With regard to the values of these different coefficients, we can say that a carbon formation can be supposed for temperature less than 800°C and for ratios xH2OxCH4 smaller than 1.

1.
Ahmed
,
K.
, and
Foger
,
K.
, 2000, “
Kinetics of Internal Steam Reforming of Methane on Ni/YSZ Based Anodes for Solid Oxide Fuel Cells
,”
Catal. Today
0920-5861,
63
, pp.
479
487
.
2.
Vernoux
,
P.
,
Guillodo
,
M.
,
Fouletier
,
J.
, and
Hammou
,
A.
, 2000, “
Alternative Anode Material for Gradual Methane Reforming in Solid Oxide Fuel Cell
,”
Solid State Ionics
0167-2738,
135
, pp.
425
431
.
3.
Lehnert
,
W.
,
Meusinger
,
J.
, and
Thom
,
F.
, 2000, “
Modelling of Gas Transport Phenomena in SOFC Anodes
,”
J. Power Sources
0378-7753,
87
, pp.
57
63
.
4.
Suwanwarangkul
,
R.
,
Croiset
,
E.
,
Fowler
,
M. W.
,
Douglas
,
P. L.
,
Entchev
,
E.
, and
Douglas
,
M. A.
, 2003, “
Performance Comparison of Fick’s, Dusty-Gas and Stefan-Maxwell Models to Predict the Concentration Overpotential of a SOFC Anode
,”
J. Power Sources
0378-7753,
122
, pp.
9
18
.
5.
Ackmann
,
T.
,
de Haart
,
L. G. J.
,
Lehnert
,
W.
, and
Stolten
,
D.
, 2003, “
Modeling of Mass and Heat Transport in Planar Substrate Type SOFCs
,”
J. Electrochem. Soc.
0013-4651,
150
(
6
), pp.
A783
A789
.
6.
Morel
,
B.
,
Laurencin
,
J.
,
Bultel
,
Y.
, and
Lefebvre-Joud
,
F.
, 2005, “
Anode-Supported SOFC Model Centered on the Direct Internal Reforming
,”
J. Electrochem. Soc.
0013-4651,
152
(
7
), pp.
A1382
A1389
.
7.
Larrain
,
D.
,
Van Herle
,
J.
,
Maréchal
,
F.
, and
Favrat
,
D.
, 2003, “
Thermal Modeling of a Small Anode Supported Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
118
, pp.
367
374
.
8.
Campanari
,
S.
, and
Iora
,
P.
, 2004, “
Definition and Sensitivity Analysis of a Finite Volume SOFC Model for a Tubular Cell Geometry
,”
J. Power Sources
0378-7753,
132
, pp.
113
126
.
9.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
, 2004, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance
,”
J. Power Sources
0378-7753,
138
, pp.
120
136
.
10.
Li
,
P. W.
, and
Suzuki
,
K.
, 2004, “
Numerical Modeling and Performance Study of a Tubular SOFC
,”
J. Electrochem. Soc.
0013-4651,
151
(
4
), pp.
A548
A557
.
11.
Yuh
,
C. Y.
, and
Selman
,
J. R.
, 1992, “
Porous-Electrode Modeling of the Molten-Carbonate Fuel-Cell Electrodes
,”
J. Electrochem. Soc.
0013-4651,
139
(
5
), pp.
1373
1379
.
12.
Fontes
,
E.
,
Lagergren
,
C.
, and
Simonsson
,
D.
, 1997, “
Mathematical Modelling of the MCFC Cathode on the Linear Polarisation of the NiO Cathode
,”
J. Electroanal. Chem.
0022-0728,
432
, pp.
121
128
.
13.
Prins-Jansen
,
J. A.
,
Fehribach
,
J. D.
,
Hemmes
,
K.
, and
De Wit
,
J. H. W.
, 1996, “
A Three-Phase Homogeneous Model for Porous Electrodes in Molten-Carbonate Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
143
(
5
), pp.
1617
1628
.
14.
Hou
,
K.
, and
Hughes
,
R.
, 2001, “
The Kinetics of Methane Steam Reforming Over a Ni∕α-Al2O Catalyst
,”
Chem. Eng. J.
0300-9467,
82
, pp.
311
328
.
15.
Mazumder
,
S.
, and
Cole
,
J. V.
, 2003, “
Rigorous 3-D Mathematical Modeling of PEM Fuel Cells. I. Model Predictions With Liquid Water Transport
,”
J. Electrochem. Soc.
0013-4651,
150
(
1
), pp.
A1503
A1509
.
16.
ESI group, CFD-ACE+, Version 2006, Manuals.
17.
Vernoux
,
P.
,
Guindet
,
J.
, and
Kleitz
,
M.
, 1998, “
Gradual Internal Methane Reforming in Intermediate-Temperature Solid-Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
145
(
10
), pp.
3487
3492
.
18.
Bruggeman
,
D. A. G.
, 1935,
Ann. Phys.
0003-3804,
24
, pp.
636
664
.
19.
Springer
,
T. E.
,
Zawodinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2342
.
20.
Natarajan
,
D.
, and
Nguyen
,
T. V.
, 2001, “
A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
148
(
12
), pp.
A1324
A1335
.
21.
EG&G Services
, 2000,
Fuel Cell Handbook
, 5th ed., DOI 10.2172/769283, pp.
8.5
8.6
.
22.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 2002,
Transport Phenomena
, 2nd ed.,
Wiley
,
New York
.
23.
Matelli
,
J. A.
, and
Bazzo
,
E.
, 2005, “
A Methodology for Thermodynamic Simulation of High Temperature, Internal Reforming Fuel Cell Systems
,”
J. Power Sources
0378-7753,
142
, pp.
160
168
.
24.
Amor
,
J. N.
, 1999, “
The Multiple Roles for Catalysis in the Production of H2
,”
Appl. Catal., A
0926-860X,
176
, pp.
159
176
.
25.
Sangtongkitcharoen
,
W.
,
Assabumrungrat
,
S.
,
Pavarajarn
,
V.
,
Laosiripojana
,
N.
, and
Praserthdam
,
P.
, 2005, “
Comparison of Carbon Formation Boundary in Different Modes of Solid Oxide Fuel Cells Fuelled by Methane
,”
J. Power Sources
0378-7753,
142
, pp.
75
80
.
26.
Zang
,
X.
,
Ohara
,
S.
,
Chen
,
H.
, and
Fukui
,
T.
, 2002, “
Conversion of Methane to Syngas in a Solid Oxide Fuel Cell With Ni-SDC Anode and LSGM Electrolyte
,”
Fuel
0016-2361,
81
, pp.
989
996
.
27.
Costamagna
,
P.
,
Panizza
,
M.
,
Cerisola
,
G.
, and
Barbucci
,
A.
, 2002, “
Effect of Composition on the Performance of Cermet Electrodes. Experimental and Theoretical Approach
,”
Electrochim. Acta
0013-4686,
47
, pp.
1079
1089
.
28.
Cosatmagna
,
P.
,
Costa
,
P.
, and
Arato
,
E.
, 1998, “
Some More Considerations on the Optimization of Cermet Solid Oxide Fuel Cell Electrodes
,”
Electrochim. Acta
0013-4686,
43
, pp.
967
972
.
You do not currently have access to this content.