The flow-field design of direct methanol fuel cells (DMFCs) is an important subject about DMFC performance. Flow fields play an important role in the ability to transport fuel and drive out the products (H2O,CO2). In general, most fuel cells utilize the same structure of flow field for both anode and cathode. The popular flow fields used for DMFCs are parallel and grid designs. Nevertheless, the characteristics of reactants and products are entirely different in anode and cathode of DMFCs. Therefore, the influences of flow fields design on cell performance were investigated based on the same logic with respect to the catalyst used for cathode and anode nonsymmetrically. To get a better and more stable performance of DMFCs, three flow fields (parallel, grid, and serpentine) utilized with different combinations were studied in this research. As a consequence, by using parallel flow field in the anode side and serpentine flow-field in the cathode, the highest power output was obtained.

1.
Kordesch
,
K.
, and
Simader
,
G.
, 1996,
Fuel Cells and their Applications
,
Wiley-VCH
, Weinheim, pp.
109
116
.
2.
Ren
,
X.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1996, “
High Performance Direct Methanol Polymer Electrolye Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
143
, pp.
L12
L15
.
3.
Baldauf
,
M.
, and
Preidel
,
W.
, 1999, “
Status of the Development of a Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
84
, pp.
161
166
.
4.
Shukla
,
A. K.
,
Christensen
,
P. A.
,
Hamnett
,
A.
, and
Hogarth
,
M. P.
, 1995, “
A Vapour-Feed Direct-Methanol Fuel Cell With Proton-Exchange Membrane Electrolyte
,”
J. Power Sources
0378-7753,
55
, pp.
87
91
.
5.
Scott
,
K.
,
Taama
,
W. M.
,
Argyropoulos
,
P.
, and
Sundmacher
,
K.
, 1999, “
The Impact of Mass Transport and Methanol Crossover on the Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
83
, pp.
204
216
.
6.
Arico
,
A. S.
,
Creti
,
P.
,
Antonucci
,
P. L.
, and
Antonucci
,
V.
, 1998, “
Comparison of Ethanol and Methanol Oxidation in a Liquid-Feed Solid Polymer Electrolyte Fuel Cell at High Temperature
,”
Electrochem. Solid-State Lett.
1099-0062,
1
, pp.
66
68
.
7.
Arico
,
A. S.
,
Shukla
,
A. K.
,
El-Khatib
,
K. M.
,
Creti
,
P.
, and
Antonucci
,
V.
, 1999, “
Effect of Carbon-Supported and Unsupported Pt–Ru Anodes on the Performance of Solid-Polymer-Electrolyte Direct Methanol Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
29
, pp.
673
678
.
8.
Yang
,
H.
, and
Zhao
,
T. S.
, 2005, “
Effect of Anode Flow Field Design on the Performance of Liquid Feed Direct Methanol Fuel Cells
,”
Electrochim. Acta
0013-4686,
50
, pp.
3243
3252
.
9.
Yang
,
H.
,
Zhao
,
T. S.
, and
Ye
,
Q.
, 2004, “
In Situ Visualization Study of CO2 Gas Bubble Behavior in DMFC Anode Flow Fields
,”
J. Power Sources
0378-7753,
139
(
1-2
), pp.
79
90
.
10.
Scott
,
K.
,
Taama
,
W. M.
, and
Argyropoulos
,
P.
, 2001, “
Engineering Aspects of the Direct Methanol Fuel Cell System
,”
J. Power Sources
0378-7753,
79
, pp.
43
59
.
11.
Scott
,
K.
,
Argyropoulos
,
P.
,
Yiannopoulos
,
P.
, and
Taama
,
W. M.
, 2001, “
Electrochemical and Gas Evolution Characteristics of Direct Methanol Fuel Cells With Stainless Steel Mesh Flow Beds
,”
J. Appl. Electrochem.
0021-891X,
31
, pp.
823
832
.
12.
Hogarth
,
M. P.
, and
Hards
,
G. A.
, 1996, “
Direct Methanol Fuel Cells. Technological Advances and Further Requirements
,”
Platinum Met. Rev.
0032-1400,
40
, pp.
150
159
.
13.
Kuver
,
A.
, and
Vielstich
,
W.
, 1998, “
Investigation of Methanol Crossover and Single Electrode Performance During PEMDMFC Operation: A Study Using a Solid Polymer Electrolyte Membrane Fuel Cell System
,”
J. Power Sources
0378-7753,
74
, pp.
211
218
.
14.
Nguyen
,
T. V.
, 1996, “
A Gas Distributor Design for Proton-Exchange-Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
143
, p.
L103
L105
.
15.
Wood
,
D. L.
,
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1998, “
Effect of Direct Liquid Water Injection and Interdigitated Flow Field on the Performance of Proton Exchange Membrane Fuel Cells
,”
Electrochim. Acta
0013-4686,
43
, p.
3795
3809
.
16.
Liu
,
L.
,
Pu
,
C.
,
Viswanathan
,
R.
,
Fan
,
Q.
,
Liu
,
R.
, and
Smotkin
,
E. S.
, 1998, “
Carbon Supported and Unsupported Pt–Ru Anodes for Liquid Feed Direct Methanol Fuel Cells
,”
Electrochim. Acta
0013-4686,
43
, pp.
3657
3663
.
17.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1999, “
Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
38
45
.
18.
Tüber
,
K.
,
Pócza
,
D.
, and
Hebling
,
C.
, 2003, “
Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell
,”
J. Power Sources
0378-7753,
124
, pp.
403
414
.
19.
Argyropoulos
,
P.
,
Scott
,
K.
, and
Taama
,
W. M.
, 1999, “
Carbon Dioxide Evolution Patterns in Direct Methanol Fuel Cells
,”
Electrochim. Acta
0013-4686,
44
, pp.
3575
3584
.
20.
Baschuk
,
J. J.
, and
Li
,
X.
, 2000, “
Modelling of Polymer Electrolyte Membrane Fuel Cells With Variable Degrees of Water Flooding
J. Power Sources
0378-7753,
86
, pp.
181
196
.
21.
Ren
,
X.
, and
Gottesfeld
,
S.
, 2001, “
Electro-Osmotic Drag of Water in Poly (Perfluorosulfonic Acid) Membranes
,”
J. Electrochem. Soc.
0013-4651,
148
, pp.
A87
A93
.
22.
Mench
,
M.
,
Boslet
,
S.
,
Thynell
,
S.
,
Scott
,
J.
, and
Wang
,
C. Y.
, 2001, “
Direct Methanol Fuel Cells
,”
S.
Narayanan
,
T.
Zawodzinski
, and
S.
Gottesfeld
, eds. The Electrochemical Society Proceedings Series,
Pennington
, NJ, PV 2001-4, pp.
241
254
.
23.
Tüber
,
K.
,
Oedegaard
,
A.
,
Hermann
,
M.
, and
Hebling
,
C.
, 2004, “
Investigation of Fractal Flow-Fields in Portable Proton Exchange Membrane and Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
131
, pp.
175
181
.
24.
Tüber
,
K.
,
Pócza
,
D.
, and
Hebling
,
C.
, 2003, “
Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell
,”
J. Power Sources
0378-7753,
124
, pp.
403
414
.
25.
Wilkinson
,
D. P.
, and
Vanderleeden
,
O.
, 2003, “
Serpentine Flow Field Design
,”
Handbook of Fuel Cells
, Vol.
3
,
John Wiley & Sons
, Chichester, UK, pp.
315
324
.
26.
Lu
,
G. Q.
, and
Wang
,
C. Y.
, 2004, “
Electrochemical and Flow Characterization of a Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
134
, pp.
330
340
.
You do not currently have access to this content.