The performances of direct methanol fuel cells are largely dependent on the methanol crossover, while the amount of methanol crossover is reported to strongly rely on membrane materials and thickness. In this research, two new membranes (Nafion 211 and Nx-424), along with well-known Nafion 117 and 112 were studied as electrolytes in the direct methanol fuel cells (DMFC). The Nafion 211 is the thinnest and latest membrane of Nafion series products and Nx-424 is a Nafion membrane with polytetrafluoroethylene (PTFE) fibers as mechanical reinforcement. Nx-424 is used primarily for chloro-alkali production and the electrolytic processes. Although open circuit voltage provides a quick way to evaluate the effect of methanol crossover, the amount of methanol crossover through the membranes was studied in detail via the electrochemical oxidation technique. Both methods show the same trend of methanol crossover of different membranes in this study. Nafion 211 was found to present the highest degree of methanol crossover, however, its’ best performance implied the fact that the influence of the cell resistance (membrane thickness) is dominated in the traditional Nafion system. Although Nafion membrane with thicker thickness and PTFE fiber within Nx-424 provided higher resistance for methanol to cross through, the negative effects of its’ hydrophobic properties also prevent the transport of H2O accompanied by the proton. Therefore, the cell performance of Nx-424 is lower both due to poor proton conductivity and thickest membrane. In other words, the cell performances of traditional Nafion series membranes (Nafion 211, 112, 117) were fully controlled by the thickness while Nx-424 was controlled both by its’ blend properties (hydrophilic-Nafion and hydrophobic-PTFE ) and thickness.

1.
Heinzel
,
A.
, and
Barragan
,
V. M.
, 1999, “
A Review of the State-of-the-Art of the Methanol Crossover in Direct Methanol Fuel Celss
,”
J. Power Sources
0378-7753,
84
, pp.
70
74
.
2.
Eisenberg
,
A.
, and
Yeager
,
H. L.
, 1982, “
Perfluorinated Ionomer Membranes
,”
ACS Symp. Ser.
0097-6156,
180
, pp.
41
63
.
3.
Wainright
,
J. S.
,
Wang
,
J.-T.
,
Weng
,
D.
,
Savinell
,
R. F.
, and
Litts
,
M.
, 1995, “
Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte
,”
J. Electrochem. Soc.
0013-4651,
142
, pp.
L121
L123
.
4.
Tricoly
,
V.
, 1998, “
Proton and Methanol Transport in Poly(Perfluorosulfonate) Membranes Containing Cs+ and H+ Cations
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
3798
3800
.
5.
Jia
,
N.
,
Lefebvre
,
M. C.
,
Halfyard
,
J.
,
Qi
,
Z.
, and
Pickup
,
P. G.
, 2000, “
Modification of Nafion Proton Exchange Membranes to Reduce Methanol Crossover in PEM Fuel Cells
,”
Electrochem. Solid-State Lett.
1099-0062,
3
, pp.
529
531
.
6.
Yu
,
T. L.
,
Lin
,
H. L.
,
Shen
,
K. S.
,
Huang
,
L. N.
,
Chang
,
Y. C.
,
Jung
,
G. B.
, and
Chan
,
S. H.
, 2005, “
Nafion/PTFE Composite Membranes for Direct Methanol Fuel Cell Applications
,”
J. Power Sources
0378-7753,
150
, pp.
11
19
.
7.
Dupont Co.
, 1999, “
General Information on Nafion Membrane for Electrolysis
,” http://www.ion-power.com/res/Nafion-01-01.pdfhttp://www.ion-power.com/res/Nafion-01-01.pdf, pp.
1
8
.
8.
10.
Jung
,
D. H.
,
Lee
,
C. H.
,
Kim
,
C. S.
, and
Shin
,
D. R.
, 1998, “
Performance of a Direct Methanol Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753,
71
, pp.
169
173
.
11.
Narayanan
,
S. R.
,
Kindler
,
A.
,
Jeffries-Nakamura
,
B.
,
Chun
,
W.
,
Frank
,
H.
,
Smart
,
M.
,
Valdez
,
T. I.
,
Surampudi
,
S.
, and
Halpert
,
G.
,1996,
Annual Proceedings
, January 9–12, “
Recent Advances in PEM Liquid-Feed Direct Methanol Fuel Cells
,”
Battery Conf. Appl. Adv.
,
11
, pp.
113
122
.
12.
Qi
,
Z.
, and
Kaufman
,
A.
, 2002, “
Open Circuit Voltage and Methanol Crossover in DMFCs
,”
J. Power Sources
0378-7753,
110
, pp.
177
185
.
13.
Ren
,
X.
,
Zawodzinski
,
T. A.
,
Uribe
,
F.
,
Dai
,
H.
, and
Gottesfeld
,
S.
, 1995, “
Methanol Cross-Over in Direct Methanol Fuel Cells
,”
Proton Conducting Membrane Fuel Cells I
,
S.
Gottesfeld
,
G.
Halpert
, and
A.
Landgrebe
, eds.,
PV 95-23
,
The Electrochemical Society Proceedings Series
, Pennington, N.J., pp.
284
298
.
14.
Ren
,
X.
,
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 2000, “
Methanol Transport Through Nation Membranes. Electro-osmotic Drag Effects on Potential Step Measurements
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
466
474
.
15.
Zawodzinski
,
T. A.
,
Springer
,
T. E.
,
Davey
,
J.
,
Jestel
,
R.
,
Lopez
,
C.
,
Valerio
,
J.
, and
Gottesfeld
,
S.
, 1993, “
A Comparative Study of Water Uptake by and Transport Through Ionomeric Fuel Cell Membranes
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
1981
1985
.
16.
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1992, “
High Performance Catalyzed Membranes of Ultra-Low Pt Loadings for Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
L28
L30
.
17.
Hikita
,
S.
,
Yamane
,
K.
, and
Nakajima
,
Y.
, 2001, “
Measurement of methanol Crossover in Direct Methanol Fuel Cell
,”
JSAE Review
,
22
, pp.
151
156
.
18.
Scott
,
K.
,
Taama
,
W.
, and
Cruickshank
,
J.
, 1998, “
Performance of a Direct Methanol Fuel Cell
,”
J. Appl. Electrochem.
0021-891X,
28
, pp.
289
297
.
19.
Ravikumar
,
M. K.
, and
Shukla
,
A. K.
, 1996, “
AC Impedance Analysis for Li+ Insertion of a Pt/λ-MnO2 Electrode in an Aqueous Phase
,”
J. Electrochem. Soc.
0013-4651,
143
, pp.
2601
2615
.
You do not currently have access to this content.