The capacity reduction of a solid-polymer-membrane-type fuel cell (PEFC) with a reformer by load leveling and by improving the efficiency of part-load operation of the reformer is considered. The power generation efficiency of a fuel cell improves by supplying gas with a high oxygen concentration to the cathode. During periods of low electricity demand, the fuel cell is operated using reformed gas and air, and water electrolysis operation is also performed. When the electric power load is large, gases stored in cylinders are supplied to the fuel cell for operation. Using the proposed method, high efficiency operation and a reduction in the fuel cell capacity are possible.

1.
Oda
,
K.
,
Sakamoto
,
S.
,
Ueda
,
M.
,
Fuji
,
A.
, and
Ouki
,
T.
, 1999, “
A Small-Scale Reformer for Fuel Cell Application
,”
Sanyo Technical Review
,
31
(
2
), pp.
99
106
(in Japanese).
2.
Takeda
,
Y.
,
Iwasaki
,
Y.
,
Imada
,
N.
, and
Miyata
,
T.
, 2004, “
Development of Fuel Processor for Rapid Start-up
,”
Proc. 20th Energy System Economic and Environment Conference
,
K.
Kimura
, ed., pp.
343
344
(in Japanese).
3.
Ibe
,
S.
,
Shinke
,
N.
,
Takami
,
S.
,
Yasuda
,
Y.
,
Asatsu
,
H.
, and
Echigo
,
M.
, 2002, “
Development of Fuel Processor for Residential Fuel Cell Cogeneration System
,”
Proc. 21st Annual Meeting of Japan Society of Energy and Resources
,
K.
Abe
, ed., Osaka, June 12-13, pp.
493
496
(in Japanese).
4.
Zhang
,
Y.
,
Ouyang
,
M.
,
Lu
,
Q.
,
Luo
,
J.
, and
Li
,
X.
, 2004, “
A Model Predicting Performance of Proton Exchange Membrane Fuel Cell Stack Thermal Systems
,”
Appl. Therm. Eng.
1359-4311,
24
, pp.
501
513
.
5.
Sedghisigarchi
,
K.
, 2004, “
Dynamic and Transient Analysis of Power Distribution System with Fuel Cells-Part 1: Fuel-Cell Dynamic Model
,”
IEEE Trans. Energy Convers.
0885-8969,
19
(
2
), pp.
423
428
.
6.
Hamelin
,
J.
,
Agbossou
,
K.
,
Laperriere
,
A.
,
Laurencelle
,
F.
, and
Bose
,
T. K.
, 2001, “
Dynamic Behavior of a PEM Fuel Cell Stack for Stationary Applications
,”
Int. J. Hydrogen Energy
0360-3199,
26
, pp.
625
629
.
7.
Yerramalla
,
S.
,
Davari
,
A.
,
Feliachi
,
A.
, and
Biswas
,
T.
, 2003, “
Modeling and Simulation of the Dynamic Behavior of a Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
124
, pp.
104
113
.
8.
Mikkola
,
M.
, 2001, “
Experimental Studies on Polymer Electrolyte Membrane Fuel Cell Stacks
,” Master’s Science thesis Helsinki University of Technology, Helsinki, Finland, pp.
58
79
.
9.
Ibaraki Prefecture Government Office of Education
, 2002, “
Modeling of Hydrogen Energy System
,” Ibaraki, Japan, High School Active Science Project Research Report (in Japanese).
10.
Badami
,
M.
, and
Caldera
,
C.
, 2002, “
Dynamic Model of a Load-Following Fuel Cell Vehicle: Impact of the Air System
,”
SAE Tech. Pap.
0148-7191, PT–96, 2002–01–0100, pp.
1
10
.
11.
Morner
,
S. O.
, and
Klein
,
S. A.
, 2001, “
Experimental Evaluation of the Dynamic Behavior of an Air-Breathing Fuel Cell Stack
,”
ASME J. Sol. Energy Eng.
0199-6231, August,
123
(
3
), pp.
225
231
.
12.
Colling
,
A. K.
, and
Roy
,
R. J.
, 1998, “
Development Status and Testing of High Differential Pressure SPE Water Electrolysis Cells
,”
SAE Tech. Pap. Ser.
0148-7191, pp.
1
8
.
13.
Nagai
,
M.
,
Tazima
,
H.
,
Sakanishi
,
A.
,
Hisatome
,
N.
, and
Ohkura
,
S.
, 1996, “
Development on Solid Polymer Electrolyte Water Electrolysis Technology for High Current Density and Energy Efficiency
,”
Proceedings 11th Hydrogen Energy Prog.
,
1
, Frankfurt, pp.
825
830
.
14.
National Astronomical Observatory
, 2003, “
Rika Nenpyo
,” Chronological Scientific Tables (CD-ROM), Maruzen Co., Ltd., Tokyo.
You do not currently have access to this content.