This paper presents a two-dimensional model to describe the gas flow in an integrated reactor, developed at the CNR-ITAE Institute, and aimed to design a βeta5kWe hydrogen generator, named HYGen II, to integrate with polymer electrolyte fuel cells (PEFCs) for residential applications. The model is able to simulate velocity profiles in order to investigate the reactor geometrical key parameters. The unit can convert light hydrocarbons (methane, propane, LPG, butane) into a hydrogen rich mixture. The processing unit consists of an innovative integrated dual bed reactor, filled with pellet catalysts: a proprietary PtCeO2 autothermal reforming (ATR) and a commercial intermediate temperature water gas shift (ITWS). For the last clean-up step, a single-stage preferential oxidation (PROX) process has been adopted. Moreover, an automation system to monitor operating conditions and control plant equipment has been designed.

1.
Ferng
,
Y. M.
,
Tzang
,
Y. C.
,
Pci
,
B. S.
,
Sun
,
C. C.
, and
Su
,
A.
, 2004, “
Analytical and Experimental Investigations of a Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
4
), pp.
381
391
.
2.
Adamson
,
K. A.
,
Baker
,
A.
, and
Jollie
,
D.
, 2004, “
Fuel Cell Systems: A Survey of Worldwide Activity
,” www.fuelcelltoday.comwww.fuelcelltoday.com, accessed September, 1, 2005.
3.
Geiger
,
S.
, and
Copper
,
M.
, 2003, “
Fuel Cell Market Survey: Small Stationary Applications
,” www.fuelcelltoday.comwww.fuelcelltoday.com, accessed September, 1, 2005.
4.
Tillmetz
,
W.
, 2005, “
Small Scale Dispersed Stationary Systems—A Status Report
,” 1.3,
Delegate Manual of Ninth Grove Fuel Cell Symposium
, London, UK.
5.
Barrett
,
S.
, 2003, “
EU—US Agreement on Fuel Cell R&D Collaboration
,”
Fuel Cells Bull.
1464-2859,
7
, p.
1
.
6.
Barrett
,
S.
, 2003, “
Euro Vision for Hydrogen Energy and Fuel Cells
,”
Fuel Cells Bull.
1464-2859,
7
, pp.
10
12
.
7.
Ogden
,
J. M.
, 2001, “
Review of Small Stationary Reformers for Hydrogen Production
,” Report to the International Energy Agency (IEA).
8.
2004, “
On-Board Fuel Processing Go∕No-Go Decision
,” DOE Decision team committee report, http://www.eere.energy.govhttp://www.eere.energy.gov, accessed September, 1, 2005.
9.
Ho
,
D.
, and
Lightner
,
V.
, 2004, “
Future Directions for DOE Fuel Processing R&D: Results of the On-Board Fuel Processing Go∕No-Go Decision for DOE’s Office of Hydrogen, Fuel Cells and Infrastructure Technologies
,”
Abstract of the 2004 Fuel Cell Seminar
, San Antonio, Tx, pp.
37
40
.
10.
Rose
,
R.
, 2002, “
Fuel Cells and Hydrogen: The Path Forward
,” Report of Breakthrough Technologies Institute, Washington.
11.
Joensen
,
F.
, and
Rosstrup-Nielsen
,
J. R.
, 2002, “
Conversion of Hydrocarbons and Alcohols for Fuel Cells
,”
J. Power Sources
0378-7753,
105
(
2
), pp.
195
201
.
12.
Ahmed
,
S.
, and
Krumpelt
,
M.
, 2001, “
Hydrogen from Hydrocarbon Fuels for Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
26
(
4
), pp.
291
301
.
13.
Amphlett
,
J. C.
, and
Peppley
,
B. A.
, 2003, “
Hydrogen Production Technologies from Fossil Sources
,”
Proceedings of HYPOTESIS V, Hydrogen Power Theoretical and Engineering Solutions Int. Symposium
, Porto Conte (Sassari), Italy.
14.
Seo
,
Y.-S
,
Shirley
,
A.
, and
Klaczkowski
,
S. T.
, 2002, “
Evaluation of Thermodynamically Favourable Operating Conditions for Production of Hydrogen in Three Different Reforming Technologies
,”
J. Power Sources
0378-7753,
108
(
1-2
), pp.
213
225
.
15.
Ersoz
,
A.
,
Olgun
,
H.
,
Ozdogan
,
S.
,
Gungor
,
C.
,
Akgun
,
F.
, and
Tiris
,
M.
, 2003, “
Autothermal Reforming as a Hydrocarbon Fuel Processing Option for PEM Fuel Cell
,”
J. Power Sources
0378-7753,
118
(
1-2
), pp.
384
392
.
16.
2001, “
Hydrogen Fuel Cell Engines and Related Technologies
,” College of the Desert and SunLite Transit Agency, Module 2: Hydrogen use, http://www.eere.energy.govhttp://www.eere.energy.gov, accessed September, 1, 2005.
17.
Rampe
,
T.
,
Heinzel
,
A.
, and
Vogel
,
B.
, 2000, “
Hydrogen Generation from Biogenic and Fossil Fuels by Autothermal Reforming
,”
J. Power Sources
0378-7753,
86
(
1-2
), pp.
536
541
.
18.
Avci
,
A. K.
, Ilsen
Onsan
,
Z.
,
Trimm
,
D. L.
, 2001, “
On-Board Fuel Conversion for Hydrogen Fuel Cells: Comparison of Different Fuels by Computer Simulations
,”
Appl. Catal., A
0926-860X,
216
(
1-2
), pp.
243
256
.
19.
Moon
,
J. D.
,
Sreekumar
,
K.
,
Lee
,
S. D.
,
Lee
,
B. G.
, and
Sik
,
K. H.
, 2001, “
Studies on Gasoline Fuel Processor System for Fuel-Cell Powered Vehicles Application
,”
Appl. Catal., A
0926-860X,
215
(
1-2
), pp.
1
9
.
20.
Zhang
,
Z. G.
,
Xu
,
G.
,
Chen
,
X.
,
Honda
,
K.
, and
Yoshida
,
T.
, 2004, “
Process Development of Hydrogenous Gas Production for PEFC from Biogas
,”
Fuel Process. Technol.
0378-3820,
85
(
8-10
), pp.
1213
1229
.
21.
Zalc
,
J. M.
, and
Loffler
,
D. G.
, 2002, “
Fuel Processing for PEM Fuel Cells: Transport and Kinetic Issues of System Design
,”
J. Power Sources
0378-7753,
111
(
1
), pp.
58
64
.
22.
Dudfield
,
C. D.
,
Chen
,
R.
, and
Adcock
,
P. L.
, 2000, “
A Compact CO Selective Oxidation Reactor for Solid Polymer Fuel Cell Powered Vehicle Application
,”
J. Power Sources
0378-7753,
86
(
1-2
), pp.
214
222
.
23.
Inbody
,
M. A.
,
Borup
,
R. L.
, and
Tafoya
,
J. I.
, 2002, “
Transient PROX Carbon Monoxide Measurement, Control and Optimization
,” Abstract of the 2002 Fuel Cell Seminar, Palm Springs, CA, pp.
94
97
.
24.
Lee
,
S. H.
,
Han
,
J.
, and
Lee
,
K. Y.
, 2002, “
Development of 10‐kWe Preferential Oxidation System for Fuel Cell Vehicles
,”
J. Power Sources
0378-7753,
109
(
2
), pp.
394
402
.
25.
Echigo
,
M.
,
Shinke
,
N.
,
Takami
,
S.
,
Tabata
,
T.
, 2004, “
Performance of a Natural Fuel Processor for Residential PEFC System using a Novel CO Preferential Oxidation Catalyst
,”
J. Power Sources
0378-7753,
132
(
1-2
), pp.
29
35
.
26.
Hagh
,
B. F.
, 2003, “
Optimization of Autothermal Reactor for Maximum Hydrogen Production
,”
Int. J. Hydrogen Energy
0360-3199,
28
(
12
), pp.
1369
1377
.
27.
Pino
,
L.
,
Vita
,
A.
,
Cordaro
,
M.
,
Recupero
,
V.
, and
Hegde
,
M. S.
, 2003, “
A Comparative Study of Pt∕CeO2 Catalysts for Catalytic Partial Oxidation of Methane to Syngas for Application in Fuel Cell Electric Vehicles
,”
Appl. Catal., A
0926-860X,
243
(
1
), pp.
135
146
.
28.
Recupero
,
V.
,
Pino
,
L.
,
Vita
,
A.
,
Cipitì
,
F.
,
Cordaro
,
M.
, and
Laganà
,
M.
, 2005, “
Development of a LPG Fuel Processor for PEFC Systems: Laboratory Scale Evaluation of Autothermal Reforming and Preferential Oxidation Subunits
,”
Int. J. Hydrogen Energy
0360-3199,
30
(
9
), pp.
963
971
.
29.
Cipitì
,
F.
,
Recupero
,
V.
,
Pino
,
L.
,
Vita
,
A.
, and
Laganà
,
M.
, 2005, “
HYGen I: Demonstration Unit to Produce 2Nm3∕h of Hydrogen for Stationary Applications
,” Fuel Cell Abstracts of 2005 Fuel Cell Seminar, Palm Springs, CA.
30.
Cipitì
,
F.
,
Recupero
,
V.
,
Pino
,
L.
,
Vita
,
A.
, and
Laganà
,
M.
, 2005, “
Experimental Analysis of a 2kWe LPG Based Fuel Processor for PEFC
,”
J. Power Sources
0378-7753,
157
(
2
), pp.
914
920
.
31.
Cipitì
,
F.
,
Laganà
,
M.
, and
Recupero
,
V.
, 2005, “
Sistema di Gestione di un Generatore di Idrogeno
,”
Automazione e Strumentazione
,
7
, pp.
105
109
.
32.
Swartz
,
S. L.
,
Seabaugh
,
M. M.
,
McCormick
,
B. E.
, and
Dawson
,
W. J.
, “
Ceria Based Water-Gas-Shift Catalysts
,”
Proceedings of The Fuel Cell Seminar
, 18–21 November, Palm Springs, CA.
33.
Kaviany
,
M.
, 1991,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
, Chap. 2, p.
31
.
34.
Kaviany
,
M.
, 1991,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
, Chap. 2, p.
62
.
35.
Bird
,
B. R.
,
Steward
,
W. E.
, and
Lightfoot
,
E. N.
, 2002,
Transport Phenomena
,
2nd ed.
,
Wiley
,
New York
, Chap. 3, p.
84
.
36.
Bird
,
B. R.
,
Steward
,
W. E.
, and
Lightfoot
,
E. N.
, 2002,
Transport Phenomena
,
2nd ed.
,
Wiley
,
New York
, Appendix B, p.
848
.
37.
Comsol Multiphysics Software Package, 2005,
Comsol Multiphysics—Chemical Engineering Module User Guide
, Chap. 4, p.
95
.
38.
Comsol Multiphysics Software Package, 2005,
Comsol Multiphysics—Chemical Engineering Module Model Library
, Chap. 7, p.
301
.
39.
Comsol Multiphysics Software Package, 2005,
Comsol Multiphysics—Chemical Engineering Module Model Library
, Chap. 7, p.
318
.
You do not currently have access to this content.