Convective heat and mass transfer in a planar, trilayer, solid oxide fuel cell (SOFC) module is considered for a uniform supply of volatile species (80%H2+20%H2O vapor) and oxidant (20%O2+80%N2) to the electrolyte surface with a uniform electrochemical reaction rate. The coupled heat and mass transfer is modeled by steady incompressible fully developed laminar flow in the interconnect ducts of rectangular cross sections for both the anode-side fuel and cathode-side oxidant flows. The governing three-dimensional mass, momentum, energy, species transfer, and electrochemical kinetics equations are solved computationally. The homogeneous porous-layer flow, which is in thermal equilibrium with the solid matrix, is coupled with the electrochemical reaction rate to properly account for the flow-duct and anode/cathode interface heat/mass transfer. Parametric effects of the rectangular flow-duct cross-sectional aspect ratio and anode porous-layer thickness on the variations in temperature and mass/species distributions, flow friction factor, and convective heat transfer coefficient are presented. The thermal and hydrodynamic behavior is characterized for effective convective cooling performance, and interconnect channels of cross-sectional aspect ratio of 2-3 along with relative anode porous-layer thickness of 0.5-1.5 are seen to provide optimal thermal management and species mass transport benefits in the SOFC module.

1.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
, New York.
2.
Hart
,
D.
, 2000, “
Sustainable Energy Conversion: Fuel Cells—The Competitive Option?
J. Power Sources
0378-7753,
86
, pp.
23
27
.
3.
Kendall
,
K.
, 2000, “
Hopes for a Flame Free Future
,”
Nature (London)
0028-0836,
404
(
6775
), pp.
233
235
.
4.
Srinivasan
,
S.
,
Mosdale
,
R.
,
Stevens
,
P.
, and
Yang
,
C.
, 1999, “
Fuel Cells: Reaching the Era of Clean and Efficient Power Generation in the Twenty-First Century
,”
Annu. Rev. Energy Environ.
1056-3466,
24
(
1
), pp.
281
328
.
5.
Singhal
,
S. C.
, and
Kendall
,
K.
, eds., 2003,
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
, Oxford.
6.
Greene
,
E. S.
,
Medeiros
,
M. G.
, and
Chiu
,
W. K. S.
, 2005, “
Application of an Anode Model to Investigate Physical Parameters in an Internal Reforming Solid-Oxide Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
(
2
), pp.
136
140
.
7.
Lockett
,
M.
,
Simmons
,
M. J. H.
, and
Kendall
,
K.
, 2004, “
CFD to Predict Temperature Profile for Scale Up of Micro-Tubular SOFC Stacks
,”
J. Power Sources
0378-7753,
131
, pp.
243
246
.
8.
Holtappels
,
P.
,
Mehling
,
H.
,
Roehlich
,
S.
,
Liebermann
,
S. S.
, and
Stimming
,
U.
, 2005, “
SOFC System Operating Strategies for Mobile Applications
,”
Fuel Cells
1615-6846,
5
(
4
), pp.
499
508
.
9.
Ahmed
,
S.
,
McPheeters
,
C.
, and
Kumar
,
R.
, 1991, “
Thermal-Hydraulic Model of a Monolithic Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
138
(
9
), pp.
2712
2718
.
10.
Li
,
P.-W.
,
Schaefer
,
L.
, and
Chyu
,
M. K.
, 2003, “
Interdigitated Heat/Mass Transfer and Chemical Reactions in a Planar Type Solid Oxide Fuel Cell
,”
Proc. of ASME Summer Heat Transfer Conference
,
ASME
,
New York
, ASME, Paper No. HT2003-47436.
11.
Li
,
P.-W.
, and
Chyu
,
M. K.
, 2005, “
Electrochemical and Transport Phenomena in Solid Oxide Fuel Cells
,”
ASME J. Heat Transfer
0022-1481,
127
(
12
), pp.
1344
162
.
12.
Park
,
S.
,
Vohs
,
J. M.
, and
Gorte
,
R. J.
, 2000, “
Direct Oxidation of Hydrocarbons in a Solid-Oxide Fuel Cell
,”
Nature (London)
0028-0836,
404
(
6775
), pp.
265
267
.
13.
Winters
,
J.
, 2003, “
Coal Cell
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
125
(
12
), pp.
42
44
.
14.
Zhan
,
Z.
, and
Barnett
,
S. A.
, 2005, “
An Octane-Fueled Solid Oxide Fuel Cell
,”
Science
0036-8075,
308
(
5723
), pp.
844
847
.
15.
Faghri
,
A.
, and
Guo
,
Z.
, 2005, “
Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3891
3920
.
16.
Iwata
,
M.
,
Hikosaka
,
T.
,
Morita
,
M.
,
Iwanari
,
T.
,
Ito
,
K.
,
Onda
,
K.
,
Esaki
,
Y.
,
Salaki
,
Y.
, and
Nagata
,
S.
, 2000, “
Performance Analysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions
,”
Solid State Ionics
0167-2738,
132
(
3-4
), pp.
297
308
.
17.
Dixon
,
J. M.
, 1963, “
Electrical Resistivity of Stabilized Zirconia at Elevated Temperatures
,”
J. Electrochem. Soc.
0013-4651,
110
(
4
), pp.
276
280
.
18.
van Roosmalen
,
J. A. M.
, and
Cordfunke
,
E. H. P.
, 1992, “
Chemical Reactivity and Interdiffusion of (La∕Sr)MnO3 and (Zr,Y)O2 Solid Oxide Fuel Cell Cathode and Electrolyte Materials
,”
Solid State Ionics
0167-2738,
52
(
4
), pp.
303
312
.
19.
Chen
,
C. C.
,
Nasrallah
,
M. M.
, and
Anderson
,
H. U.
, 1993, “
Synthesis and Characterization of (CeO2)0.8(SmO1.5)0.2 Thin Films From Polymeric Precursors
,”
J. Electrochem. Soc.
0013-4651,
140
(
12
), pp.
3555
3560
.
20.
Clausen
,
C.
,
Bagger
,
C.
,
Bilde-Sorensen
,
J. B.
, and
Horsewell
,
A.
, 1994, “
Microstructural and Microchemical Characterization of the Interface between La0:85Sr0:15MnO3 and Y2O3-Stabilized ZrO2
,”
Solid State Ionics
0167-2738,
70-71
(Part 1), pp.
59
64
.
21.
Song
,
R.-H.
,
Jeon
,
K.-S.
,
Shin
,
D. R.
, and
Yokokawa
,
H.
, 2001, “
Sintering and Oxidation Behaviors of LaCrO3-Dispersed Cr Alloy for Metallic Interconnector of Solid Oxide Fuel Cell
,”
J. Chem. Eng. Jpn.
0021-9592,
34
(
2
), pp.
154
157
.
22.
Yokokawa
,
H.
,
Sakai
,
N.
,
Horita
,
T.
, and
Yamaji
,
K.
, 2001, “
Recent Developments in Solid Oxide Fuel Cell Materials
,”
Fuel Cells
1615-6846,
1
(
2
), pp.
117
131
.
23.
Ioselevich
,
A. S.
, and
Kornyshev
,
A. A.
, 2001, “
Phenomenological Theory of Solid Oxide Fuel Cell Anode
,”
Fuel Cells
1615-6846,
1
(
1
), pp.
40
65
.
24.
Virkar
,
A. V.
,
Chen
,
J.
,
Tanner
,
C. W.
, and
Kim
,
J.-W.
, 2000, “
The Role of Electrode Microstructure on Activation and Concentration Polarizations in Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
131
(
1-2
), pp.
189
198
.
25.
Yakabe
,
H.
,
Hishinuma
,
M.
,
Uratani
,
M.
,
Matsuzaki
,
Y.
, and
Yasuda
,
I.
, 2000, “
Evaluation and Modeling of Performance of Anode-Supported Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
86
, pp.
423
431
.
26.
Vayenas
,
C. G.
,
Debenedettl
,
P. G.
,
Yentekakls
,
I.
,
Hegedus
,
L. L.
, 1985, “
Cross-Flow, Solid State Electrochemical Reactors: A Steady State Analysis
,”
Ind. Eng. Chem. Fundam.
0196-4313,
24
, pp.
316
324
.
27.
Haynes
,
C.
, and
Wepfer
,
W. J.
, 2001, “
Characterizing Heat Transfer Within a Commercial-Grade Tubular Solid Oxide Fuel Cell for Enhanced Thermal Management
,”
Int. J. Hydrogen Energy
0360-3199,
26
, pp.
369
379
.
28.
Recknagle
,
K. P.
,
Williford
,
R. E.
,
Chick
,
L. A.
,
Rector
,
D. R.
, and
Khaleel
,
M. A.
, 2003, “
Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks
,”
J. Power Sources
0378-7753,
113
, pp.
109
114
.
29.
Cheng
,
C. H.
,
Chang
,
Y. W.
, and
Hong
,
C. W.
, 2005, “
Multiscale Parametric Studies on the Transport Phenomena of a Solid Oxide Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
(
4
), pp.
219
225
.
30.
Li
,
P.-W.
, and
Chyu
,
M. K.
, 2003, “
Simulation of the Chemical/Electrochemical Reactions and Heat/Mass Transfer for a Tubular SOFC in a Stack
,”
J. Power Sources
0378-7753,
124
, pp.
487
498
.
31.
Nishimo
,
T.
,
Iwai
,
H.
, and
Suzuki
,
K.
, 2006, “
Comprehensive Numerical Modeling and Analysis of a Cell-Based Indirect Internal Reforming Tubular SOFC
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
(
1
), pp.
33
44
.
32.
Yuan
,
J.
,
Rokni
,
M.
, and
Sundén
,
B.
, 2001, “
Simulation of Fully Developed Laminar Heat and Mass Transfer in Fuel Cell Ducts With Different Cross-Sections
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4047
4058
.
33.
Yuan
,
J.
,
Rokni
,
M.
, and
Sundén
,
B.
, 2003, “
Three Dimensional Computational Analysis of Gas and Heat Transport Phenomena in Ducts Relevant for Anode-Supported Solid Oxide Fuel Cells
,”
Int. J. Heat Mass Transfer
0017-9310
46
, pp.
809
821
.
34.
Yuan
,
J.
, and
Sundén
,
B.
, 2005, “
Analysis of Intermediate Temperature Solid Oxide Fuel Cell Transport Processes and Performance
,”
ASME J. Heat Transfer
0022-1481,
127
(
12
), pp.
1380
1390
.
35.
Lide
,
D. R.
, and
Frederikse
,
H. P. R.
, 1995-1996,
CRC Handbook of Chemistry and Physics
,
76th Edition
,
CRC Press
, Boca Raton.
36.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
,
2nd Edition
,
Springer-Verlag
, Berlin.
37.
Majumdar
,
P.
, 2005,
Computational Methods for Heat and Mass Transfer
,
Taylor & Francis
, New York.
38.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
, New York.
39.
Chase
, Jr.,
M. W.
,
Davies
,
C. A.
, and
Downey
, Jr.,
J. R.
, 1985, JANAF Thermochemical Tables,
J. Phys. Chem. Ref. Data
0047-2689,
1
, pp.
1323
1329
.
40.
Shah
,
R. K.
, and
London
,
A. L.
, 1978, “
Laminar Flow Forced Convection in Ducts
,”
Advances in Heat Transfer
(Supplement 1),
Irvine
,
T. F.
, and
Hartnett
,
J. P.
(eds),
Academic Press
, New York.
41.
Magar
,
Y.
, 2006, “
Convective Cooling and Thermal Management Optimization of Anode-Supported Solid Oxide Fuel Cells
,” MS thesis, University of Cincinnati, Cincinnati.
42.
Simwonis
,
D.
,
Thülen
,
H.
,
Dias
,
F. J.
,
Naoumidis
,
A.
, and
Stöver
,
D.
, 1999, “
Properties of Ni∕YSZ Porous Cermets for SOFC Anode Substrates Prepared by Tape Casting and Coat-Mix Process
,”
J. Mater. Process. Technol.
0924-0136,
92-93
, pp.
107
111
.
43.
Lauriat
,
G.
, and
Vafai
,
K.
, 1991, “
Forced Convective Flow and Heat Transfer Through a Porous Medium Exposed to a Flat Plate or a Channel
,”
Convective Heat and Mass Transfer in Porous Media
,
Kakaç
,
S.
,
et al.
eds.,
Kluwer
, Dordrecht, pp.
289
327
.
44.
Alkam
,
M. K.
,
Al-Nimr
,
M. A.
, and
Hamdan
,
M. O.
, 2001, “
Enhancing Heat Transfer in Parallel-Plate Channels by Using Porous Inserts
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
931
938
.
45.
Manglik
,
R. M.
, 2003, “
Heat Transfer Enhancement
,”
Heat Transfer Handbook
,
Bejan
,
A.
, and
Kraus
,
A. D.
, eds.,
Wiley
, New York, Ch. 14.
You do not currently have access to this content.