Background: The transition to a hydrogen fuel economy is hindered by the lack of a practical storage method and concerns associated with its safe handling. Chemical hydrides have the potential to address these concerns. Sodium borohydride (sodium tetrahydroborate, NaBH4), is the most attractive chemical hydride for H2 generation and storage in automotive fuel cell applications, but recycling from sodium metaborate (NaBO2), is difficult and costly. An electrochemical regeneration process could represent an economically feasible and environmentally friendly solution. Method of Approach: We report a study of the properties of concentrated NaBO2 alkaline aqueous solutions that are necessary to the development of electrochemical recycling methods. The solubility, pH, density, conductivity, and viscosity of aqueous NaBO2 solutions containing varying weight percentages (1, 2, 3, 5, 7.5, and 10wt.%) of alkali hydroxides (NaOH, KOH, and LiOH) were evaluated at 25°C. The precipitates formed in supersaturated solutions were characterized by x-ray diffraction and scanning electron microscopy. Results: All NaBO2 physicochemical properties investigated, except solubility, increased with increased hydroxide ion concentration. The solubility of NaBO2 was enhanced by the addition of KOH to the saturated solution, but decreased when LiOH and NaOH were used. The highest ionic conductivity (198.27Sm) was obtained from the filtrate of saturated aqueous solutions containing more than 30wt.%NaBO2 and 10wt.% NaOH prior to filtration. At 10wt.% hydroxide, the viscosity of the NaBO2 solution was the highest in the case of LiOH (11.38 cP) and lowest for those containing NaOH (6.37 cP). The precipitate was hydrated, NaBO2 for all hydroxides, but its hydration level was unclear. Conclusions: The use of KOH as the electrolyte was found to be more advantageous for the H2 storage and generation system based on NaBO2 solubility and solution half-life. However, the addition of NaOH led to the highest ionic conductivity, and its use seems more suitable for the electroreduction of NaBO2. Further investigations on the impact of KOH and NaOH on the electroreduction of NaBO2 in aqueous media have the potential to enhance the commercial viability of NaBH4.

1.
Hart
,
D.
, 2003, “
Hydrogen—A Truly Sustainable Transport Fuel?
,”
Frontiers in the Ecology and the Environment
,
1
(
3
), pp.
138
145
.
2.
Amendola
,
S. C.
,
Sharp-Goldman
,
S. L.
, Salem
Janjua
,
M.
,
Spencer
,
N. C.
,
Kelly
,
M. T.
,
Petillo
,
P. J.
, and
Binder
,
M.
, 2000, “
A Safe, Portable, Hydrogen Gas Generator Using Aqueous Borohydride Solution and Ru Catalyst
,”
Int. J. Hydrogen Energy
0360-3199,
25
, pp.
969
975
.
3.
Wu
,
C.
,
Zhang
,
H.
,
Yi
,
B.
, 2004, “
Hydrogen Generation from Catalytic Hydrolysis of Sodium Borohydride for Proton Exchange Membrane Fuel Cells
,”
Catal. Today
0920-5861,
93–95
, pp.
477
483
.
4.
Kojima
,
Y.
,
Suzuki
,
K.-I.
,
Fukumoto
,
K.
,
Kawai
,
Y.
,
Kimbara
,
M.
,
Nakanishi
,
H.
, and
Matsumoto
,
S.
, 2004, “
Development of 10kW-scale Hydrogen Generator Using Chemical Hydride
,”
J. Power Sources
0378-7753,
125
, pp.
22
26
.
5.
Suda
,
S.
,
Sun
,
Y. M.
,
Liu
,
B.-H.
,
Zhou
,
Y.
,
Morimitsu
,
S.
,
Arai
,
K.
,
Tsukamoto
,
N.
,
Uchida
,
M.
,
Candra
,
Y.
, and
Li
,
Z.-P.
, 2001, “
Catalytic Generation of Hydrogen by Applying Fluorinated-Metal Hydrides as Catalysts
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
725
, pp.
209
212
.
6.
Hua
,
D.
,
Hanxi
,
Y.
,
Xinping
,
A.
, and
Chuansin
,
C.
, 2003, “
Hydrogen Production from Catalytic Hydrolysis of Sodium Borohydride Solution Using Nickel Boride Catalyst
,”
Int. J. Hydrogen Energy
0360-3199,
28
, pp.
1095
1100
.
7.
U. S. Department of Energy
, 2004, “
Hydrogen Storage “Think Tank” Report
,”
Office of Hydrogen
, Fuel Cells and Infrastructure Technologies, Washington, DC., p.
6
.
8.
Davis
,
B.
,
Lo
,
F.
,
Calabretta
,
D.
, and
Abdul
,
M.
, 2005, “
Chemical Hydrogen Storage for Automotive Applications
,”
44th Annual Conference of Metallurgists of CIM
, Calgary, Alberta, Canada, pp.
595
605
.
9.
Mohring
,
R. M.
, and
Wu
,
Y.
, 2003, “
Hydrogen Generation via Sodium Borohydride
,”
AIP Conf. Proc.
0094-243X,
671
, pp.
90
100
.
10.
Garret
,
D. E.
, 1998,
Borates, Handbook of Deposits, Processing, Properties and Use
,
Academic Press
,
London, UK
, Chap. 1, pp.
23
49
.
11.
Lyday
,
P. A.
, and
Buckingham
,
D. A.
, 2005,
Boron Statistics
, US Geological Survey, Mineral Commodity Summaries, Annual Publication, pp.
36
37
.
12.
Wu
,
Y.
,
Kelly
,
M. T.
, and
Ortega
,
J. V.
, 2004, “
Low-Cost, Off-Board Regeneration of Sodium Borohydride
,” DOE Hydrogen Program, Progress Report, pp.
195
199
.
13.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
Second
Edition,
John Wiley and Sons Ltd.
,
West Sussex, England
, pp.
297
301
, Chap. 8.
14.
Kong
,
V. C. Y.
,
Foulkes
,
F. R.
,
Kirk
,
D. W.
, and
Hinatsu
,
J. T.
, 1999, “
Development of Hydrogen Storage for Fuel Cell Generators. I: Hydrogen Generation using Hydrolysis Hydrides
,”
Int. J. Hydrogen Energy
0360-3199,
24
, pp.
665
675
.
15.
Amendola
,
S. C.
,
Kelly
,
M. T.
, and
Wu
,
Y.
, 2003, “
Processes for Synthesizing Borohydride Compounds
,” US Patent 6524542.
16.
Snover
,
J.
, and
Wu
,
Y.
, 2004, “
Recycle of Discharged Sodium Borate Fuel
,” US Patent 6706909 B1.
17.
Filby
,
E. E.
, 1976, “
Method of Recycling Lithium Borate to Lithium Borohydride through Diborane
,” US Patent 3993732.
18.
Knorre
,
H.
,
Main
,
H. A.
,
Kloepfer
,
H.
,
Main
,
F. A.
, and
Bretschneider
,
G.
, 1968, “
Production of Sodium Borohydride
,” US Patent 3379511.
19.
Yu
,
Z.
, 2002, “
A Process for Synthesizing Metal Borohydrides
,” Patent WO 02062701.
20.
Seijiro
,
S.
, 2004, “
Method for Producing Alkali Metal Boron Hydride
,” Patent JP2004–010446.
21.
Kojima
,
Y.
, and
Haga
,
T.
, 2003, “
Recycling Process of Sodium Metaborate to Sodium Borohydride
,”
Int. J. Hydrogen Energy
0360-3199,
28
, pp.
989
993
.
22.
Li
,
Z. P.
,
Morigazaki
,
N.
,
Liu
,
B. H.
, and
Suda
,
S.
, 2003, “
Preparation of Sodium Borohydride by The Reaction of MgH2 with Dehydrated Borax through Ball Milling at Room Temperature
,”
J. Alloys Compd.
0925-8388,
349
, pp.
232
236
.
23.
Wilding
,
B.
,
Bingham
,
D.
,
Wendt
,
K.
, and
Klingler
,
K.
, 2004, “
Hydrogen Storage: Radiolysis for Borate Regeneration
,” DOE Hydrogen Program, Progress Report, pp.
200
204
.
24.
Materials & Energy Research Institute Tokyo (MERIT), Ltd.
, Nagano-Ken, Japan, http://merit.hydrogen.co.jp/Why_BH4/WhyBH4.htmlhttp://merit.hydrogen.co.jp/Why_BH4/WhyBH4.html
25.
Suda
,
S.
, 2003,
The Sodium Borohydride Hydrogen Energy Systems
, R&D Policies, KUCEL-MERIT Group, pp.
1
11
.
26.
Amendola
,
S.
, 2002, “
Electroconversion Cell
,” US Patent 6497973.
27.
Cooper
,
H. B. H.
, 1973, “
Electrolytic Process for the Production of Alkali Metal Borohydrides
,” US Patent 3734842.
28.
Sharifian
,
H.
, and
Dutcher
,
J. S.
, 1990, “
Production of Quaternary Ammonium and Quaternary Phosphonium Borohydride
,” US Patent 4904357.
29.
Hale
,
C. H.
, and
Sharifian
,
H.
, 1990, “
Production of Metal Borohydrides and Organic Onium Borohydrides
,” US Patent 4931154.
30.
Gyenge
,
E.
, and
Oloman
,
C. W.
, 1998, “
Electrosynthesis attempts to Tetrahydridoborates
,”
J. Appl. Electrochem.
0021-891X,
28
, pp.
1147
1151
.
31.
Levy
,
A.
,
Brown
,
J. B.
, and
Lyons
,
C. J.
, 1960, “
Catalyzed Hydrolysis of Sodium Borohydride
,”
Ind. Eng. Chem.
0019-7866,
52
, pp.
211
214
.
32.
Jacques
,
S.
,
Berthet
,
M. P.
, and
Bonnetot
,
B.
, 2004, “
Hydrogen Storage through Borohydrides. Advantages of the Chemical Using Sodium Borohydride and Monitored Hydrolysis. Recycling of the Metaborate By-products
,”
Chemical Engineering Transactions
,
4
, pp.
331
336
.
33.
Stockmayer
,
W. H.
,
Rice
,
D. W.
, and
Stephenson
,
C. C.
, 1955, “
Thermodynamic Properties of Sodium Borohydride and Aqueous Borohydride Ion
,”
J. Am. Chem. Soc.
0002-7863,
77
, pp.
1980
1983
.
34.
Brown
,
B. B.
, 1957, “
Stability of Potassium Borohydride in Alkaline Solutions
,”
J. Am. Chem. Soc.
0002-7863,
79
, pp.
4241
4242
.
35.
Weiren
,
R.
, and
Deren
,
Q.
, 1998, “
Decomposition of Borohydride Solution and Stabilization Mechanism of NaOH
,”
Fudan J. (Nat. Sci.)
0427-7104,
37
(
3
), pp.
276
278
.
36.
Kreevoy
,
M. M.
, and
Jacobson
,
R. W.
, 1979, “
Rate of Decomposition of Sodium Borohydride in Basic Aqueous Solutions
,”
Ventron Alembic
,
15
, pp.
2
3
.
37.
Amendola
,
S. C.
,
Sharp-Goldman
,
S. L.
,
Salem Janjua
,
M.
,
Spencer
,
N. C.
,
Kelly
,
M. T.
,
Petillo
,
P. J.
, and
Binder
,
M.
, 2000, “
A Safe, Portable, Hydrogen Gas Generator using Aqueous Borohydride Solution and Ru Catalyst
,”
Int. J. Hydrogen Energy
0360-3199,
25
, pp.
969
975
.
38.
Urusova
,
M. A.
, and
Valyashko
,
V. M.
, 1993, “
Phase Equilibria in Hydrothermal Systems Containing Sodium and Potassium Borates
,” Institute of General and Inorganic Chemistry,
Russ. J. Inorg. Chem.
0036-0236,
38
(
4
), pp.
662
664
.
39.
Blasdale
,
W. C.
, and
Slansky
,
C. M.
, 1938, “
The solubility Curves of Boric Acid and the Borates of Sodium
,”
J. Am. Chem. Soc.
0002-7863,
61
, pp.
917
920
.
40.
Nies
,
N. P.
, and
Hulbert
,
R. W.
, 1967, “
Solubility Isotherms in the System Sodium Oxide-Boric Oxide-Water
,”
J. Chem. Eng. Data
0021-9568,
12
(
3
), pp.
303
313
.
41.
Kocher
,
J.
, and
Lahlou
,
A.
, 1970, “
Le diagramme polythermique du système ternaire eau-oxyde de sodium—anhydride borique
,”
Bull. Soc. Chim. Fr.
0037-8968,
6
, pp.
2083
2089
.
42.
Menzel
,
H.
, and
Schulz
,
H.
, 1943, “
Boric Acid and alkali salts of boric acid XI. The system NaBO2‐H2O
,”
Z. Anorg. Allg. Chem.
0044-2313,
251
, pp.
167
200
.
43.
Kojima
,
Y.
,
Suzuki
,
K.-I.
,
Fukumoto
,
K.
,
Sasaki
,
M.
,
Yamamoto
,
T.
,
Kawai
,
Y.
, and
Hayashi
,
H.
, 2002, “
Hydrogen Generation using Sodium Borohydride Solution and Metal Catalyst Coated on Metal Oxide
,”
Int. J. Hydrogen Energy
0360-3199,
27
, pp.
1029
1034
.
44.
Suda
,
S.
,
Sun
,
Y.-M.
,
Zhou
,
Y.
,
Morimitsu
,
S.
,
Arai
,
K.
,
Tsukamoto
,
N.
,
Uchida
,
M.
,
Candra
,
Y.
, and
Li
,
Z.-P.
, 2001, “
Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
725
, pp.
209
212
.
45.
Corti
,
H.
,
Crovetto
,
R.
, and
Fernandez-Prini
,
R.
, 1980, “
Properties of the Borate Ion in Dilute Aqueous Solutions
,”
J. Chem. Soc., Faraday Trans. 1
0300-9599,
76
(
10
), pp.
2179
2186
.
46.
Kim
,
J.-H.
,
Kim
,
K.-T.
,
Kang
,
Y.-M.
,
Kim
,
H.-S.
,
Song
,
M.-S.
,
Lee
,
Y.-J.
,
Lee
,
P. S.
, and
Lee
,
J.-Y.
, 2004, “
Study on Degradation of Filamentary Ni Catalysts on Hydrolysis of Sodium Borohydride
,”
J. Alloys Compd.
0925-8388,
379
, pp.
222
227
.
47.
Bouaziz
,
R.
, 1962, “
Contribution a l’étude radiocristallographique de quelques borates de lithium et de sodium
,”
Bull. Soc. Chim. Fr.
0037-8968,
5
, pp.
1451
1459
.
48.
John
,
KRC
, Jr.
, 1951, “
Crystallographic Data: Sodium Metaborate Dihydrate, NaBO22H2O
,”
Anal. Chem.
0003-2700,
24
, p.
806
.
49.
Kojima
,
Y.
,
Kawai
,
Y.
,
Nakanishi
,
H.
, and
Shinichi
,
M.
, 2004, “
Compressed Hydrogen Generation using Chemical Hydride
,”
J. Power Sources
0378-7753,
135
, pp.
36
41
.
50.
Dean
,
J. A.
, 1999,
Lange’s Handbook of Chemistry
,
15th
ed.,
McGraw Hill
,
New York
, Secs. 8.2 and 8.7.
51.
Li
,
Z. P.
,
Liu
,
B. H.
,
Arai
,
K.
,
Asaba
,
K.
, and
Suda
,
S.
, 2004, “
Evaluation of Alkaline Borohydride Solutions as the Fuel for Fuel Cell
,”
J. Power Sources
0378-7753,
126
, pp.
28
33
.
You do not currently have access to this content.