In the last years the development of fuel cell (FC) technology has highlighted the correlated problem of storage and transportation of gaseous fuels, particularly hydrogen and methane. In fact, forecasting a large scale application of the FC technology in the near future, the conventional technologies of storage and transportation of gaseous fuels will be inadequate to support an expectedly large request. Therefore, many studies are being devoted to the development of novel efficient technologies for gas storage and transport; one of those is methane and hydrogen storage in solid, water-based clathrate hydrates. Clathrate hydrates (CH) are nonstoichiometric, nanostructured complexes of small “guest” molecules enclosed into water cages, which typically form at relatively low temperature-high pressure. In nature, CH of natural gas represent an unconventional and unexploited energy source and methane hydrate technology is already applied industrially. More recently, striking literature reports showed a rapid approach to the possibility of obtaining hydrogen hydrates at room temperature/mild pressures. Methane hydrate formation has been shown to be heavily promoted by some chemicals, notably amphiphiles. Our research is aimed at understanding the basic phenomena underlying CH formation, with a goal to render hydrate formation conditions milder, and increase the concentration of gas within the CH. In the present paper, we show the results of a preliminary attempt to relate the structural features of several amphiphilic additives to the kinetic and thermodynamic parameters of methane hydrate formation—e.g., induction times, rate of formation, occupancy, etc. According to the present study, it is found that a reduction of induction time does not necessarily correlate to an increase of the formation rate and occupancy, and so on. This may be related to the nature of chemical moieties forming a particular amphiphile (e.g., the hydrophobic tail, head group, counterion, etc.). Moreover, a chemometric approach is presented which is aimed at obtaining information on the choice of coformers for H2 storage in hydrates at mild pressures and temperatures.

1.
Sloan
,
E. D.
, Jr.
, 1998,
Clathrate Hydrates of Natural Gases
,
Marcel Dekker
,
New York
.
2.
Sloan
,
E. D.
, Jr.
, 2003, “
Fundamental Principles and Applications of Natural Gas Hydrates
,”
Nature (London)
0028-0836,
426
, pp.
353
359
.
3.
Sloan
,
E. D.
, 2000,
Hydrate Engineering
,
Soc. Petrol. Eng.
,
Richardson, TX
.
4.
Kvenvolden
,
K. A.
, 1998, “
Methane Hydrates: Resources in the Near Future
,”
Proc. Int. Japan Natl Oil Comp
,
Chiba City, Japan
.
5.
Kennett
,
J. P.
,
Cannariato
,
G.
,
Hendy
,
I. L.
, and
Behl
,
R. J.
, 2003,
Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis
,
Am. Geophys. Union
,
Washington DC
.
6.
Dickens
,
G. R.
,
Castillo
,
M. M.
, and
Walker
,
J. C. G.
, 1997, “
A Blast of Gas in the Latest Paleocene: Simulating First Order Effects of Massive Dissociation of Ocean Methane Hydrate
,”
Geology
0091-7613,
25
, pp.
259
262
.
7.
Gudmundsson
,
J. S.
, and
Børrehaug
,
A.
, 1996, “
Frozen Hydrate for Transport of Natural Gas
,”
2nd International Conference on Natural Gas Hydrate
, Toulouse, France, June 2–6.
9.
Mao
,
W. L.
,
Mao
,
H.
,
Goncharov
,
A. F.
,
Struzhkin
,
V. V.
,
Guo
,
Q.
,
Hu
,
J.
,
Shu
,
J.
,
Hemley
,
R. J.
,
Somayazulu
,
M.
, and
Zhao
,
Y.
, 2002, “
Hydrogen Clusters in Clathrate Hydrate
,”
Science
0036-8075,
297
, pp.
2247
2249
.
10.
Patchkovskii
,
S.
, and
Tse
,
J. S.
, 2003, “
Thermodynamic Stability of Hydrogen Clathrates
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
, pp.
14645
14650
.
11.
Mao
,
W. L.
, and
Mao
,
H.
, 2004, “
Hydrogen Storage in Molecular Compounds
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
, pp.
708
710
.
12.
Lee
,
H.
,
Lee
,
J.
,
Kim
,
D. Y.
,
Park
,
J.
,
Seo
,
Y. T.
,
Zeng
,
H.
,
Moudrakovski
,
I. L.
,
Ratcliffe
,
C. I.
, and
Ripmeester
,
J. A.
, 2005, “
Tuning Clathrate Hydrates for Hydrogen Storage
,”
Nature (London)
0028-0836,
434
, pp.
743
746
.
13.
Kelland
,
M. A.
,
Svartaas
,
T. M.
,
Øvsthus
,
J.
, and
Namba
,
T.
, 2000, “
A New Class of Kinetic Hydrate Inhibitors
,”
Ann. N.Y. Acad. Sci.
0077-8923,
912
, pp.
281
293
.
14.
Karaaslan
,
U.
,
Uluneye
,
E.
, and
Parlaktuna
,
M.
, 2002, “
Effect of an Anionic Surfactant on Different Types of Hydrate Structures
,”
J. Pet. Sci. Eng.
0920-4105,
35
, pp.
49
57
.
15.
Zhong
,
Y.
,
Rogers
, and
R. E.
, 2000, “
Surfactant Effects on Gas Hydrate Formation
,”
Chem. Eng. Sci.
0009-2509,
55
, pp.
4175
4187
.
16.
Lin
,
W.
,
Chen
,
G.-J.
,
Sun
,
C.-Y.
,
Guo
,
X.-Q.
,
Wu
,
Z.-K.
,
Liang
,
M.-Y.
,
Chen
,
L.-T.
, and
Yang
,
L. Y.
, 2004, “
Effect of Surfactant on the Formation and Dissociation Kinetic Behavior of Methane Hydrate
,”
Chem. Eng. Sci.
0009-2509,
59
, pp.
4449
4455
.
17.
Link
,
D. D.
,
Ladner
,
E. P.
,
Elsen
,
H. A.
, and
Taylor
,
C. E.
, 2003, “
Formation and Dissociation Studies for Optimizing the Uptake of Methane by Methane Hydrates
,”
Fluid Phase Equilib.
0378-3812,
211
, pp.
1
10
.
18.
Zhang
,
C. S.
,
Fan
,
S. S.
,
Liang
,
D. Q.
, and
Guo
,
K. H.
, 2004, “
Effect of Additives on Formation of Natural Gas Hydrate
,”
Fuel
0016-2361,
83
, pp.
2115
2121
.
19.
Rogers
,
R. E.
, and
Zhong
,
Y.
, 2002, “
Surfactant Process for Promoting Gas Hydrate Formation and Application of the Same
,” U.S. Patent No. 6,389,820.
20.
Mork
,
M.
, 2002, “
Formation Rate of Natural Gas Hydrate: Reactor Experiments and Models
,” Thesis for the degree of Doktor Ingeniør, Deparment of Petroleum Engineering and Applied Geophysics, Norwegian University of Science and Technology.
21.
Kothapalli
,
C. R.
, 2002, “
Catalysis of Gas Hydrates by Biosurfactants in Seawater-Saturated Sand/Clay
,” Ph.D. thesis, Department of Chemical Engineering, Mississippi State, Mississippi.
22.
Israelachvili
,
J.
, 1991,
Intermolecular & Surface Forces
,
2nd ed.
,
Academic
,
New York
.
23.
Vögtle
,
F.
, 1991,
Supramolecular Chemistry
,
Wiley
,
Chichester
.
24.
Fuhrop
,
J. H.
, and
Köning
,
J.
, 1994,
Membranes and Molecular Assemblies: The Synkinetic Approach Cambridge
,
The Royal Society of Chemistry
, Cambridge, UK.
25.
Tanford
,
C.
, 1980,
The Hydrophobic Effect: Formation of Micelles and Biological Membranes
,
2nd ed.
,
Wiley
,
New York
.
26.
Zana
,
R.
, 1987,
Surfactant Solutions: New Methods of Investigation
,
Surfactant Science Series
Vol.
22
,
Marcel Dekker
,
New York
.
27.
Bunton
,
C. A.
, and
Savelli
,
G.
, 1986, “
Organic Reactivity in Aqueous Micelles and Similar Assemblies
,”
Advances in Physical Organic Chemistry
.
V.
Gold
and
D.
Bethell
, eds.,
Academic
,
London
, Vol.
22
.
28.
Brinchi
,
L.
,
Di Profio
,
P.
,
Germani
,
R.
,
Giacomini
,
V.
,
Savelli
,
G.
, and
Bunton
,
C. A.
, 2000, “
Surfactant Effects on Decarboxylation of Alkoxynitrobenzisoxazole-3-Carboxylate Ions. Acceleration by Premicelles
,”
Langmuir
0743-7463,
16
, pp.
222
226
.
29.
Savelli
,
G.
,
Germani
,
R.
, and
Brinchi
,
L.
, 2001, “
Reactivity Control by Aqueous Amphiphilic Self-Assembling Systems
,”
Reaction and Synthesis in Surfactant Systems
,
J.
Texter
ed.,
Marcel Dekker
,
New York
, pp.
175
246
.
30.
Savelli
,
G.
,
Spreti
,
N.
, and
Di Profio
,
P.
, 2000, “
Enzyme Activity and Stability Control by Amphiphilic Self-Organizing Systems in Aqueous Solutions
,”
Curr. Opin. Colloid Interface Sci.
1359-0294,
5
, pp.
111
117
.
31.
Di Profio
,
P.
,
Arca
,
S.
,
Germani
,
R.
, and
Savelli
,
G.
, 2005, “
Surfactant Promoting Effects on Clathrate Hydrate Formation: Are Micelles Really Involved?
,”
Chem. Eng. Sci.
0009-2509,
60
, pp.
4141
4145
.
32.
Arca
,
S.
, 2004, “
Studio Sul Condizionamento Dei Clatrati Idrati: Ruolo Delle Nanostrutture Supramolecolari (Study on Clathrate Hydrate Conditioning: The Role of Supramolecular Nanostructures)
,” thesis, Department of Chemistry, University of Perugia, Italy.
33.
Bacaloglu
,
R.
,
Bunton
,
C. A.
, and
Ortega
,
F.
, 1989, “
Micellar Enhancements of Rates of SN2 Reactions of Halide Ions. the Effect of Head Group Size
,”
J. Phys. Chem.
0022-3654,
93
, pp.
1497
1502
.
35.
Rovetto
,
L. J.
,
Schoonman
,
J.
, and
Peters
,
C. J.
, 2005, “
Phase Behavior of Low-Pressure Hydrogen Clathrate
,” ICGH 5,
Fifth
International Conference on Gas Hydrates
, Trondheim, Norway, p.
5031
.
36.
Cruciani
,
G.
,
Crivori
,
P.
,
Carrupt
,
P.-A.
, and
Testa
,
B.
, 2000, “
Molecular Fields in Quantitative Structure-Permeation Relationships: The Volsurf Approach
,”
J. Mol. Struct.: THEOCHEM
0166-1280,
503
, pp.
17
30
.
You do not currently have access to this content.