Prediction of mass transfer effects is a key element in fuel cell design. In this paper, the results of a generalized analysis appropriate to a wide range of designs and flow conditions are presented. Mass transfer in a rectangular gas passage, diffusion layer, and the combination of the two is considered. Fully developed viscous flow is presumed to occur within the passage, while the incompressible form of Darcy’s law is prescribed for the diffusion layer. The mathematical foundations for a simple mass transfer analysis are presented. Detailed calculations are then performed by means of a computational fluid dynamics code. These results are then correlated according to the analytical methodology in terms of nondimensional numbers appropriate to mass transfer analysis; namely, the overall mass transfer driving force as a function of the blowing parameter. Parametric studies are performed for a range of geometries, as characterized by the aspect ratio and blockage factor. It is shown that a simple solution for the overall driving force may readily be obtained from the two individual solutions for the conjugate mass transfer problem. This solution is quite general in its nature, and may readily be used to predict concentration polarization effects for a variety of fuel cells.

1.
Ma
,
L.
,
Ingham
,
D. B.
,
Pourkashanian
,
M.
, and
Carcadea
,
E.
, 2005, “
Review of the Computational Fluid Dynamics Modelling of Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
, pp.
246
257
.
2.
Beale
,
S. B.
, and
Zhubrin
,
S. V.
, 2005, “
A Distributed Resistance Analogy for Solid Oxide Fuel Cells
,”
Numer. Heat Transfer, Part B
1040-7790,
47
, pp.
573
591
.
3.
Jacob
,
M.
, 1949,
Heat Transfer
,
Wiley
,
New York
.
4.
Beale
,
S. B.
, 2004, “
Calculation Procedure for Mass Transfer in Fuel Cells
,”
J. Power Sources
0378-7753,
128
, pp.
185
192
.
5.
Spalding
,
D. B.
, 1960, “
A Standard Formulation of the Steady Convective Mass Transfer Problem
,”
Int. J. Heat Mass Transfer
0017-9310,
1
, pp.
192
207
.
6.
Spalding
,
D. B.
, 1963,
Convective Mass Transfer; an Introduction
,
Edward Arnold
,
London
.
7.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1980,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
8.
Mills
,
A. F.
, 2001,
Mass Transfer
,
Prentice Hall
,
Upper Saddle River, N.J.
9.
Beale
,
S. B.
, 2005, “
Mass Transfer in Plane and Square Ducts
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3256
3260
.
10.
Spalding
,
D. B.
, 2004,
PHOENICS Overview
,
CHAM Ltd.
, TR001,
London
.
11.
Sherwood
,
T. K.
,
Brian
,
P. L. T.
,
Fisher
,
R. E.
, and
Dressner
,
L.
, 1965, “
Salt Concentration at Phase Boundaries
,”
Ind. Eng. Chem. Fundam.
0196-4313,
4
, pp.
113
118
.
12.
Shah
,
R. K.
, and
London
,
A. L.
, 1978, in
Advances in Heat Transfer
,
T. F.
Irvine
and
J. P.
Hartnett
, eds.,
Academic Press
,
New York
.
13.
Epstein
,
N.
, 1989, “
On Tortuosity and the Tortuosity Factor in Flow and Diffusion Through Porous Media
,”
Chem. Eng. Sci.
0009-2509,
44
, pp.
777
779
.
14.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
15.
Litster
,
S.
, and
Djilali
,
N.
, 2005, in
Transport Phenomena in Fuel Cells
,
B.
Sundén
and
M.
Faghri
, eds.,
WIT Press
,
Southhampton, Boston
, pp.
175
213
.
16.
Beale
,
S. B.
, 2004, “
Calculation Method for Mass Transfer in Fuel Cells
,”
J. Power Sources
0378-7753,
128
, pp.
185
192
.
17.
Vafai
,
K.
, and
Tien
,
C. L.
, 1981, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
24
, pp.
195
203
.
18.
Pharaoh
,
J. G.
, 2005, “
On the Permeability of Gas Diffusion Media Used in PEM Fuel Cells
,”
J. Power Sources
0378-7753,
144
, pp.
77
82
.
19.
Taylor
,
R.
, and
Krishna
,
R.
, 1993,
Multicomponent Mass Transfer
,
Wiley-Interscience
,
New York
.
20.
Cussler
,
E. L.
, 1984,
Diffusion: Mass Transfer in Fluid Systems
,
Cambridge University Press
,
Cambridge
.
21.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 2001,
Transport Phenomena
,
Wiley
,
New York
.
You do not currently have access to this content.