One of the main targets in the development of anode-supported solid oxide fuel cell (SOFCs) is to improve the electrochemical performance. This can be achieved by optimizing processing and microstructural parameters of the SOFCs. Variations of the thickness of the cathode functional layer and the cathode current collector layer, the grain size of the powders used for applying these layers, and the sintering temperature, can influence the electrochemical performance as such that lower operation temperatures become possible without detrimentally affecting the power output to a great extent. In this study the effect of variations of the sintering temperature of the cathode on (1) the microstructure, (2) the gas diffusivity and permeability in the cathode, and (3) electrochemical performance of FZJ-type anode-supported single cells, was investigated. The FZ-Jülich cell design is based on anode-supported type cells, which are characterized by a relatively thick anode (thickness: 1.0-1.5mm) consisting of a NiO/8YSZ cermet, a thin 8YSZ electrolyte, and a bi-layered cathode. The cathode distinguished two separated layers: first a cathode functional layer consisting of La0.65Sr0.3MnO3(LSM)Y2O3-stabilized ZrO2 (8YSZ) and a cathode current collector layer of pure La0.65Sr0.3MnO3 (LSM). This study can be considered as a follow-up of that (Journal of Power Sources 141 (2005) 216–226) describing the improvement of the cell performance by a systematic variation of the microstructure. The experiments described in this paper and the corresponding results are part of a more extensive study to investigate in more detail the effect of the sintering temperature on the electrochemical performance of LSM-type SOFCs. Since research is still going on, conclusions, drawn in this contribution, are yet not definitive.

1.
Haanappel
,
V. A. C.
,
Mertens
,
J.
,
Rutenbeck
,
D.
,
Tropartz
,
C.
,
Herzhof
,
W.
,
Sebold
,
D.
, and
Tietz
,
F.
, 2005, “
Optimization of Processing and Microstructural Parameters of LSM Cathodes to Improve the Electrochemical Performance of Anode-Supported SOFCs
,”
J. Power Sources
0378-7753,
141
, pp.
216
226
.
2.
Pross
,
E.
,
Laube
,
J.
,
Weber
,
A.
,
Müller
,
A. C.
, and
Ivers-Tiffée
,
E.
, 2003, “
Low Cost (La,Sr)MnO3 Cathode Material with Excellent Electrochemical Properties
,”
Proc. Solid Oxide Fuel Cells VIII
,
S. C.
Singhal
and
M.
Dokiya
, eds.,
the Electrochemical Society
, Pennington, NJ, USA, pp.
391
399
.
3.
Murray
,
E.P.
, and
Tsai
,
T.
, 1998, “
Oxygen Transfer Processes in (La,Sr)MnO3∕Y2O3-Stabilized ZrO2 Cathodes: an Impedance Spectroscopy Study
,” Barnett, S.A.,
Solid State Ionics
0167-2738,
110
, pp.
235
243
.
4.
Morgensen
,
M. J.
,
Primdahl
,
S.
, and
Mogensen
,
M.
, 1999, “
Characterisation of Composite SOFC Cathodes using Electrochemical Impedance Spectroscopy
,”
Electrochim. Acta
0013-4686,
44
, pp.
4195
4201
.
5.
Ostergard
,
M. J. L.
,
Clausen
,
C.
,
Bagger
,
C.
, and
Mogensen
,
M.
, 1995, “
Manganite-Zirconia Composite Cathodes for SOFC: Influence of Structure and Composition
,”
Electrochim. Acta
0013-4686,
40
, pp.
1971
1981
.
6.
Juhl
,
M.
,
Primdahl
,
S.
,
Manon
,
C.
, and
Mogensen
,
M.
, 1996, “
Performance/Structure Correlation for Composite SOFC Cathodes
,”
J. Power Sources
0378-7753,
61
, pp.
173
181
.
7.
Rietveld
,
B.
,
Nammensma
,
P.
,
Ouweltjes
,
J.P.
, and
Druten
,
v. G.
, 2002, “
Solid Oxide Fuel Cell Development at ECN and Production at INDEC
,”
Proc. Fuel Cell Seminar Fuel Cell: Fuel Cells—Reliable
,
Clean Energy for the World
, Courtesy Associates, Washington, DC, USA, pp.
886
889
.
8.
Fott
,
P.
,
Petrini
,
S.
,
and Schneider
,
P.
, 1983, “
Transport Parameters of Monodispersed Porous Catalysts
,”
Collect. Czech. Chem. Commun.
0010-0765,
48
, pp.
215
227
.
9.
Arnost
,
D.
, and
Schneider
,
P.
, 1995, “
Dynamic Transport of Multicomponent Mixtures of Gases in Porous Solids
,”
Chem. Eng. J.
0300-9467,
57
, pp.
91
99
.
10.
Rothfeld
,
L. B.
, 1963, “
Gaseous Counterdiffusion in Catalytic Pellets
,”
AIChE J.
0001-1541,
9
(
1
), pp.
19
24
.
11.
Hejtmanek
,
P.
,
Capek
,
P.
,
Solcova
,
O.
, and
Schneider
,
P.
, 2000, “
Determination of Transport Parameters of Porous Catalysts Using Unsteady Permeation of Gases
,”
Chem. Papers
54
(
4
), pp.
215
220
.
12.
Wedershoven
,
C.
, PhD-thesis, Forschungszentrum Jülich, Germany (to be published).
13.
Buchkremer
,
H.P.
,
Dieckmann
,
U.
, and
Stöver
,
D.
, 1996, “
Component Manufacturing and Stack Integration of Anode-Supported Planar SOFC System
,”
Proc. 2nd European Solid Oxide Fuel Cell Forum
,
B.
Thorstensen
, ed.,
Eur. SOFC Forum
,
Oberrohrdorf
, Switzerland, pp.
221
228
.
14.
Huijsmans
,
J. P. P.
,
Berkel van
,
F. P. F.
, and
Christie
,
G. M.
, 1998, “
Intermediate Temperature SOFC–A Promise for the 21st Century
,”
J. Power Sources
0378-7753,
71
, pp.
107
110
.
15.
Yan
,
J. W.
,
Lu
,
Y. G.
,
Jiang
,
Y.
,
Dong
,
Y. L.
,
Yu
,
C. U.
, and
Li
,
W. Z.
, 2002, “
Fabrication and Testing of a Doped Lanthanum Gallate Electrolyte Thin-Film Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
149
(
9
), pp.
A1132
A1135
.
16.
Haart de
,
L. G. J.
,
Mayer
,
K.
,
Stimming
,
U.
, and
Vinke
,
I. C.
, 1998, “
Operation of Anode-Supported Thin Electrolyte Film Solid Oxide Fuel Cells at 800°C and below
,”
J. Power Sources
0378-7753,
71
, pp.
302
305
.
17.
Kenjo
,
T.
, and
Nishiya
,
M.
, 1992,
Solid State Ionics
0167-2738,
57
, pp.
295
302
.
18.
Mai
,
A.
,
Haanappel
,
V. A. C.
,
Tietz
,
F.
, and
Stöver
,
D.
, 2005, “
Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells. Part II. Influence of the CGO Interlayer
,” to be published in
the Proceedings of the International Conference on Solid State Ionics SSI-15
, 17–22 July, 2005,
Baden-Baden
, Germany, Solid State Ionics,
177
, pp.
2103
2107
.
You do not currently have access to this content.