A dynamic model of a polymer electrolyte fuel cell hybrid system has been developed within MATLAB-SIMULINK. Components are modeled using electrochemical and mass transport as well as heat transfer equations. The implemented equations describe the steady-state as well as the dynamic operation of the system with sufficient accuracy, although considerable simplifications have been made for the stack and the peripheral components to keep model complexity and computing time low. Emphasis is given to the operation limits of the PEFC system, notably the conditions for trouble-free operation at different loads and high or low ambient temperature. The potential of the simulation as system optimization tool and efficient operation guide are demonstrated. Model validation was accomplished by experiments on a homemade 150W portable system including a Ni-MH accumulator for 300W peak power output.

1.
Costamagna
,
P.
, and
Srinivasan
,
S.
, 2001, “
Quantum Jumps in the PEMFC Science and Technology From the 1960s to the Year 2000. Part II. Engineering, Technology Development and Applications Aspects
,”
J. Power Sources
0378-7753,
102
, pp.
253
269
.
2.
Benardi
,
D.
, and
Verbrugge
,
W.
, 1992, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
2477
2491
.
3.
Um
,
S.
, and
Wang
,
C. Y.
, 2004, “
Three-Dimensional Analysis of Transport and Electrochemical Reactions in PEFCs
,”
J. Power Sources
0378-7753,
125
, pp.
40
51
.
4.
Natarajan
,
D.
, and
Van Nguyen
,
T.
, 2001, “
A 2D, Two-Phase, Multicomponent, Transient Model for the Cathode of a PEFC Using Conventional Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
148
, pp.
A1324
A1335
.
5.
Rieckmann
,
C.
, 1997, “
Lösung des Problems der Diffusion und Reaktion in dreidimensionalen Porennetzwerken für allgemeine Kinetiken
,” Ph.D. thesis, TU Hamburg-Harburg.
6.
Bernardi
,
D.
, and
Verbrugge
,
M. W.
, 1991, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
137
, pp.
1151
1163
.
7.
Lemeš
,
Z.
,
Vath
,
A.
,
Hartkopf
,
Th.
, and
Mäncher
,
H.
, 2006, “
Dynamic Fuel Cell Models and Their Application in Hardware-in-the-Loop Simulation
,”
J. Power Sources
0378-7753,
154
, pp.
386
393
.
8.
Wendt
,
H.
, and
Kreysa
,
G.
, 1999,
Electrochemical Engineering
,
Springer-Verlag
, Berlin.
9.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
2334
2342
.
10.
Baehr
,
H. D.
, and
Stephan
,
K.
, 1998,
Wärme- und Stoffübertragung
, 3.Auflage,
Springer-Verlag
, Berlin.
11.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley-VCH
, New York.
12.
Wärmeatlas
,” 1994, Verband Deutscher Ingenieure.
13.
Graf
,
C.
,
Vath
,
A.
, and
Nicoloso
,
N.
, 2006, “
Modeling of the Heat Transfer in a Portable PEFC System Within MATLAB-SIMULINK
,”
J. Power Sources
0378-7753,
155
, pp.
52
59
.
You do not currently have access to this content.