The production of hydrogen was investigated in a fixed bed tubular reactor via steam reforming of methanol (SRM) using CuOZnOAl2O3 catalysts prepared by wet impregnation method and characterized by measuring surface area, pore volume, x-ray diffraction patterns, and scanning electron microscopy photographs. The SRM was carried out at atmospheric pressure, temperature 493-573K, steam to methanol molar ratio 1–1.8 and contact-time (W/F) 315kg cat./(mol/s of methanol). Effects of reaction temperature, contact-time, steam to methanol molar ratio and zinc content of the catalyst on methanol conversion, selectivity, and product yields was evaluated. The addition of zinc enhanced the methanol conversion and hydrogen production. The excess steam promoted the methanol conversion and suppressed the carbon monoxide formation. Different strategies have been mentioned to minimize the carbon monoxide formation for the steam reforming of methanol to produce polymer electrolyte membrane (PEM) fuel cell grade hydrogen. Optimum operating conditions with appropriate composition of catalyst has been investigated to produce more selective hydrogen with minimum carbon monoxide. The experimental results were fitted well with the kinetic model available in literature.

1.
Raimondi
,
F.
,
Geissler
,
K.
,
Wambach
,
J.
, and
Wokaun
,
A.
, 2002, “
Hydrogen Production by Methanol Reforming: Post-Reaction Characterization of a Cu∕ZnO∕Al2O3 Catalyst by XPS and TPD
,”
Appl. Surf. Sci.
0169-4332,
189
, pp.
59
71
.
2.
Lindstrom
,
A.
,
Pettersson
,
L. J.
, and
Menon
,
P. G.
, 2002, “
Activity and Characterization of Cu∕Zn, Cu∕Cr and Cu∕Zr on γ-Alumina for Methanol Reforming for Fuel Cell Vehicles
,”
Appl. Catal., A
0926-860X,
234
, pp.
111
125
.
3.
Ahmed
,
S.
, and
Krumpelt
,
M.
, 2001, “
Hydrogen From Hydrocarbon Fuels for Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
26
, pp.
291
301
.
4.
Kniep
,
B. L.
,
Girgsdies
,
F.
, and
Ressler
,
T.
, 2005, “
Effect of Precipitate Aging on the Microstructural Characteristics of Cu∕ZnO Catalysts for Methanol Steam Reforming
,”
J. Catal.
0021-9517,
236
, pp.
34
44
.
5.
Wiese
,
W.
,
Emonts
,
B.
, and
Peters
,
R.
, 1999, “
Methanol Reforming in a Fuel Cell Drive System
,”
J. Power Sources
0378-7753,
84
, pp.
187
193
.
6.
Durga
,
K. V.
,
Subrahmanyam
,
M.
,
Ratnamala
,
A.
,
Venugopal
,
D.
,
Srinivas
,
B.
,
Sharma
,
M. V. P.
,
Madhavendra
,
S. S.
,
Bikshapathi
,
B.
,
Venkateswarlu
,
K.
, and
Krishnudu
,
T.
, 2002, “
Correlation of Activity and Stability of CuO∕ZnO∕Al2O3 Methanol Steam Reforming Catalysts With Cu∕Zn Composition Obtained by SEM-EDAX Analysis
,”
Catal. Commun.
1566-7367,
3
, pp.
417
424
.
7.
Suwa
,
Y.
,
Ito
,
S.
,
Kameoka
,
S.
,
Tomishige
,
K.
, and
Kunimori
,
K.
, 2004, “
Comparative Study Between Zn−Pd∕C and Pd∕ZnO Catalysts for Steam Reforming of Methanol
,”
Appl. Catal., A
0926-860X,
267
, pp.
9
16
.
8.
Matter
,
P. H.
,
Braden
,
D. J.
, and
Ozkan
,
U. S.
, 2004, “
Steam Reforming of Methanol to H2 Over Nonreduced Zr-Containing CuO∕ZnO Catalysts
,”
J. Catal.
0021-9517,
223
, pp.
340
351
.
9.
Idem
,
R. O.
, and
Bakhshi
,
N. N.
, 1994, “
Production of Hydrogen From Methanol. 1. Catalyst Characterization Studies
,”
Ind. Eng. Chem. Res.
0888-5885,
33
, pp.
2047
2058
.
10.
Froment
,
G. F.
, and
Bischoff
,
K. B.
, 1990,
Chemical Reactor Analysis and Design
,
2nd ed.
,
Wiley
, New York.
11.
Jiang
,
C. J.
,
Trimm
,
D. L.
,
Wainwright
,
M. S.
, and
Cant
,
N. W.
, 1993, “
Kinetic Mechanism for the Reaction Between Methanol and Water Over a Cu-ZnO-Al2O3 Catalyst
,”
Appl. Catal., A
0926-860X,
97
, pp.
145
158
.
12.
Jiang
,
C. J.
,
Trimm
,
D. L.
,
Wainwright
,
M. S.
, and
Cant
,
N. W.
, 1993, “
Kinetic Study of Steam Reforming of Methanol Over Copper-Based Catalysts
,”
Appl. Catal., A
0926-860X,
97
, pp.
245
255
.
13.
Peppley
,
B. A.
,
Amphlett
,
J. C.
,
Kearns
,
L. M.
, and
Mann
,
R. F.
, 1999, “
Methanol-Steam Reforming on Cu∕ZnO∕Al2O3. Part 1: The Reaction Network
,”
Appl. Catal., A
0926-860X,
179
, pp.
21
29
.
14.
Peppley
,
B. A.
,
Amphlett
,
J. C.
,
Kearns
,
L. M.
, and
Mann
,
R. F.
, 1999, “
Methanol-Steam Reforming on Cu∕ZnO∕Al2O3. Part 2. A Comprehensive Kinetic Model
,”
Appl. Catal., A
0926-860X,
179
, pp.
31
49
.
15.
Breen
,
J. P.
, and
Ross
,
J. R. H.
, 1999, “
Methanol Reforming for Fuel-Cell Applications: Development of Zirconia-Containing Cu-Zn-Al Catalysts
,”
Catal. Today
0920-5861,
51
, pp.
521
533
.
16.
Agrell
,
J
.,
Birgersson
,
H.
, and
Boutonnet
,
M.
, 2002, “
Steam Reforming of Methanol Over a Cu∕ZnO∕Al2O3 Catalyst: A Kinetic Analysis and Strategies for Suppression of CO Formation
,”
J. Power Sources
0378-7753,
106
, pp.
249
257
.
17.
Sekizawa
,
K.
,
Yano
,
S.
,
Eguchi
,
K.
, and
Arai
,
H.
, 1998, “
Selective Removal of CO in Methanol Reformed Gas Over Cu-Supported Mixed Metal Oxides
,”
Appl. Catal., A
0926-860X,
169
, pp.
291
297
.
18.
Dudfield
,
C. D.
,
Chen
,
R.
, and
Adcock
,
P. L.
, 2000, “
Evaluation and Modelling of a CO Selective Oxidation Reactor for Solid Polymer Fuel Cell Automotive Applications
,”
J. Power Sources
0378-7753,
85
, pp.
237
244
.
19.
Oshiro
,
H.
,
Nagaya
,
K.
,
Mitani
,
K.
, and
Tsuchiyama
,
S.
, 1996,
Proceedings of Fuel Cell Seminar
,
Orlando, Florida, 1996, pp.
319
324
.
20.
Geissler
,
K.
,
Newson
,
E.
,
Vogel
,
F.
,
Truong
,
T. B.
,
Hottinger
,
P.
, and
Wokaun
,
A.
, 2001, “
Autothermal Methanol Reforming for Hydrogen Production in Fuel Cell Applications
,”
Phys. Chem. Chem. Phys.
1463-9076,
3
, pp.
289
293
.
You do not currently have access to this content.